

COMUNE DI BIENTINA (Provincia di Pisa)

VARIANTE ANTICIPATRICE AL PIANO OPERATIVO E CONTESTUALE PIANO ATTUATIVO DEL COMPARTO DENOMINATO TR cop4-A DELL'AREA INDUSTRIALE DI PRATOGRANDE

RELAZIONE DI FATTIBILITA' GEOLOGICA (ai sensi del D.P.G.R. n.5/R del 30.01.2020)

(aggiornata a seguito delle integrazione per gli aspetti idraulici richieste dal Settore Genio Civile Valdarno Inferiore - Bientina prot. n. 992/2024 del 22/01/2024)

- FEBBRAIO 2024 -

INDICE

	pag.
1. INTRODUZIONE ALLA VARIANTE	3
2. METODOLOGIA DI STUDIO	5
3. INQUADRAMENTO GEOGRAFICO E GEOLOGICO STRUTTURALE	5
4. CARATTERISTICHE GEOLOGICHE E GEOMORFOLOGICHE	6
5. CARATTERISTICHE GEOLOGICO-TECNICHE	8
6. CARATTERISTICHE SISMICHE	10
7. CARATTERISTICHE IDROGEOLOGICHE	13
8. CARATTERISTICHE IDRAULICHE	14
9. CONDIZIONI DI FATTIBILITA'	14
<u>ALLEGATI</u>	
	scala
ALL.1 "Corografia"	1:10.000
ALL.2 "Estratto R.U. stato attuale"	1:5.000
ALL.3 "Estratto R.U. stato modificato"	1:5.000
ALL.4 "Estratto P.O. adottato stato attuale"	1:5.000
ALL.5 "Estratto P.O. adottato stato modificato"	1:5.000
ALL.6 "Estratto P.A. schema progettuale"	1:4.000/2.000
ALL.7 "Carta geologica"	1:10.000
ALL.8 "Sezione geologica"	1:25.000
ALL.9 "Carta geomorfologica" ALL.10 "Carta della pericolosità geologica"	1:10.000 1:10.000
ALL.10 Carta dena pericolosita geologica ALL.11 "Carta litotecnica"	1:10.000
ALL.11 'Carta motecnica' ALL.12 "Carta geologico tecnica"	1:10.000
ALL.13 "Ubicazione delle indagini"	1:5.000
ALL.14 "Risultati delle indagini geognostiche"	1.5.000
ALL.15 "Risultati delle indagini sismiche"	
ALL.16 "Carta delle frequenze"	1:12.000
ALL.17 "Carta delle MOPS"	1:10.000
ALL.18 "Carta della pericolosità sismica locale"	1:10.000
ALL.19 "Reticolo idrografico regionale"	1:5.000
ALL.20 "Carta idrogeologica"	1:10.000
ALL.21 "Carta della pericolosità da alluvione"	1:4.000
ALL.22 "Opere di messa in sicurezza idraulica"	1:5.000

1. INTRODUZIONE ALLA VARIANTE

La presente Relazione di fattibilità geologica è stata redatta a supporto di una proposta di Variante al Regolamento Urbanistico vigente, che costituisce anche Variante anticipatrice al Piano Operativo adottato del Comune di Bientina (con Del. C.C. n.23 del 26/04/2022), con contestuale Piano Attuativo del Comparto denominato TR cop-4A situato nell'area industriale di Pratogrande. La Variante prevede modifiche dimensionali e del disegno urbano per un comparto edificatorio già individuato e pianificato da entrambi i suddetti strumenti, mentre il Piano Attuativo è finalizzato all'insediamento di una attività di logistica in detto comparto con la realizzazione di due corpi di fabbrica, viabilità e parcheggi interni, piazzale e aree a verde. (Vedi ALL.1 "Corografia").

Questa Relazione sostituisce la versione precedente di cui al Deposito n. 596 del 27.11.2023 (nonostante che per gli aspetti geologici e sismici trattati fosse in sostanziale conformità alle direttive tecniche approvate con DGRT n.31/2020) in ragione della richiesta di integrazione per gli aspetti idraulici trasmessa dal Settore Genio Civile Valdarno Inferiore (assunta dal Comune di Bientina a Prot. n. 992/2024 in data 22/01/2024) che ha reso necessaria una modifica progettuale con la realizzazione di due corpi di fabbrica anziché tre e lo spostamento verso Ovest del fabbricato più ad Est (di circa 20 mt) al fine di evitare la sovrapposizione con le aree caratterizzate da magnitudo idraulica severa. Gli aspetti geologici e sismici trattati sono rimasti invariati rispetto alla versione precedente sono stati aggiornati solo gli aspetti progettuali e quelli idraulici ripresi dalla nuova soluzione progettuale e dalla nuova relazione idraulica redatta dall'Ing. A. Gabbrielli.

In particolare gli obiettivi della Variante sono:

- consentire l'insediamento di un'attività nell'ambito della Logistica, la quale necessita, a seguito dei recenti sviluppi tecnologici, di strutture alte ed estese;
- consentire corpi di fabbrica di estensioni maggiori a quanto previsto dal PO adottato senza nuovo consumo di suolo; a tal fine è necessario avere un comparto fondiario unico e non diviso da viabilità pubblica;
- modificare ed ottimizzare diminuendone la superficie, la viabilità pubblica. La variante al PO adottato prevede anche la realizzazione di un "braccetto" verso la viabilità di accesso esistente, in attesa della realizzazione della rotatoria prevista dal PO a nord; tale "braccetto" potrà continuare ad essere anche una volta realizzata la rotatoria, come accesso al subcomparto ad ovest (esterno al perimetro della presente Variante) in funzione dell'organizzazione interna al sub-comparto stesso.
- organizzare diversamente gli spazi destinati a parcheggi pubblici posizionandoli in maniera funzionale alle modifiche del disegno urbano ed ai lavoratori che ne usufruiranno.
- coniugare esigenze produttive ed innovazioni in ambito di sostenibilità ambientale, con particolare riferimento agli automezzi utilizzati dalla prevista attività logistica.

La Variante al RU vigente ed al PO adottato consiste quindi nelle seguenti modifiche sostanziali, di cui agli elaborati urbanistici progettuali riportati negli estratti cartografici dell'ALL.2 "Estratto R.U. stato attuale", dell'ALL.3 "Estratto R.U. stato modificato", dell'ALL.4 "Estratto P.O. adottato stato attuale" e dell'ALL.5 "Estratto P.O. adottato stato modificato":

- suddivisione del Comparto TR-Cop4 in due sub-comparti TR-Cop4-A e TR-Cop4-B; il comparto A è quello di oggetto della presente Variante, mentre il comparto B, suddiviso in due ambiti, rimane in attesa di attuazione con i parametri e le superfici (quest'ultime proporzionalmente riferite alla superficie territoriale rimanente) previste dal PO adottato.
- incremento dell'altezza ammessa, da 12 a 16 ml;
- incremento della superficie fondiaria; per il sub-comparto TR-Cop4-A viene prevista una superficie fondiaria di 147.000 mq;

- incremento dei parcheggi pubblici;
- diminuzione della superficie di viabilità pubblica e realizzazione nuovo "braccetto";
- diminuzione spazio a verde a tutela degli insediamenti e per mitigazione ambientale;
- incremento del verde pubblico, in modo più diffuso, sparso e funzionale agli insediamenti.

Il Piano Attuativo del comparto TR-Cop4-A prevede:

- realizzazione di due fabbricati di cui il fabbricato A di dimensioni circa 290x146,5x16 m (sup. copertura 42.495 mq), il fabbricato B di dimensioni circa 270x116,6x16 m (sup. copertura 31.482 mq);
- realizzazione di parcheggi pubblici per una superficie di circa 3.773 mq, di viabilità pubblica per circa 4.050 mq e di verde ambientale F5 per circa 24.690 mq;
- realizzazione di parcheggi privati per circa 25.740 mq e di verde interno per circa 8.300 mq. In dettaglio i parametri dimensionali del comparto A sono riassunti nella seguente tabella.

Parametri dimensionali - Comparto A						
	Parametri Dimensionali del comparto		Dati di progetto			
SUPERFICIE TERRITORIALE	MQ. 157.020,00					
SUPERFICIE FONDIARIA	MQ. 142.997,00					
Parcheggi Pubblici (P)	MQ. 3.773,00					
Verde ambientale F5	MQ. 24.690,00					
Strade pubbliche	MQ. 4.050,00					
D.T.	MQ. 32.513,00					
S.E. massima	MQ. 79.000,00	>	MQ.76.684,00			
I.C.	MQ.142.997,00 X 60% = MQ. 85.798,20	>	MQ.76.684,00			
H max	ML.16,00					
Parcheggi privati	MQ.85.798,20 X 30% = MQ. 25.739,46	<	MQ.42.850,00			

Nell'ALL.6 "Estratto P.A. schema progettuale" è riportata la pianta ed i prospetti dell'assetto progettuale del comparto in esame con individuate le opere previste.

Il R.U. del Comune di Bientina era supportato da elaborati geologici di pericolosità e di fattibilità redatti ai sensi del D.P.G.R. n.26/R del 27/04/2007 che successivamente, per la Variante puntuale approvata nel 2014 interessante l'area produttiva in esame, erano stati aggiornati ai sensi del D.P.G.R. n.53/R del 25/10/2011. Nel 2020, con Del. Giunta Unione Valdera n.107 del 07/08/2020, sono stati adottati gli studi geologici di supporto al Piano Strutturale Intercomunale dell'Unione dei Comuni della Valdera di cui Bientina fa parte (adozione con Del. C.C. n.26 del 10.07.2020) redatti sempre nel rispetto del D.P.G.R. 53/R/2011 ma rivisitati ai sensi del D.P.G.R. n. 5/R/2020 per gli aspetti geomorfologici e con la redazione degli studi di micro zonazione sismica di livello 1. Per gli aspetti idraulici sono state inoltre approvate con Decreto del Segretario Generale dell'Autorità di Bacino Distrettuale dell'Appennino Settentrionale n.08 del 27/01/2021, le modifiche alle perimetrazioni delle aree a pericolosità da alluvione del P.G.R.A. redatte ai sensi della L.R. 41/2018. Nel 2022, come sopra detto, è stato adottato il primo P.O. redatto ai sensi del D.P.G.R. n. 5/R/2020 che contiene anche alcuni approfondimenti a livello locale del quadro conoscitivo geologico.

Di conseguenza per la presente Variante anticipatrice con contestuale Piano Attuativo sono stati ripresi questi ultimi approfondimenti integrandoli, dove è stato possibile, con ulteriori dati disponibili al fine di meglio individuare le condizioni di fattibilità per gli aspetti geologici, al rischio da alluvioni, a problematiche idrogeologiche ed agli aspetti sismici del progetto urbanistico.

Per quanto riguarda gli aspetti idrologico-idraulici rimandiamo alla relativa Relazione idraulica di fattibilità redatta dall'incaricato Ing. Alessio Gabbrielli di Scandicci (FI) a supporto del presente progetto urbanistico.

2. METODOLOGIA DI STUDIO

Lo studio ha preso in esame la porzione di territorio interessata dalla previsione urbanistica relativa al comparto denominato TR cop4-A e si è articolato secondo le seguenti fasi:

- acquisizione dei dati geotecnici e sismici disponibili per la zona in esame implementati rispetto alle banche dati esistenti;
- verifica dell'assetto geologico, geomorfologico, idrogeologico e sismico dell'area in studio e di un suo congruo intorno;
- ricostruzione del modello geologico tecnico dell'area in esame sulla base delle prove geognostiche di riferimento costituite da:
- n.3 sondaggi geognostici per una massima profondità raggiunta di 40 m con analisi di laboratorio dei campioni di terreno prelevati;
- n.3 prove penetrometriche dinamiche eseguite nei primi 6 m di sottosuolo;
- n.18 prove penetrometriche statiche CPT che hanno raggiunto una massima profondità di investigazione di 20 m dal piano di campagna;
- ricostruzione del modello sismico dell'area in esame sulla base delle prove geofisiche di riferimento costituite da:
- n.1 prova sismica in foro tipo Down-Hole eseguita fino a 31 m di profondità dal p.c.;
- n.1 profilo di geofisica con metodologia Masw;
- n.1 misura di sismica passiva su stazione singola con strumento Tromino;
- verifica dello stato di pericolosità geologica e sismica dell'area interessata dalla Variante in funzione delle relative classi di pericolosità attribuite ai sensi del DPGR 5/R/2020;
- individuazione delle condizioni di fattibilità per l'attuazione degli interventi urbanistici previsti in relazione agli aspetti di pericolosità e rischio geologico, sismico e da problematiche idrogeologiche ai sensi del DPGR 5/R/2020.

La ricostruzione del modello generale geologico tecnico e sismico del sottosuolo dell'area in esame si è quindi basata sui dati di riferimento acquisiti dalle banche dati geologiche regionali e comunali e su alcune indagini di recente acquisizione.

L'ubicazione di tutte le indagini geognostiche e sismiche presenti nella zona in esame, distinte per tipologia, è stata riportata nell'ALL.13 "Ubicazione delle indagini"; i risultati ottenuti dalle prove geognostiche prese a riferimento nella presente relazione sono riportati nell'ALL.14 "Risultati delle indagini geognostiche", mentre le risultanze delle prove sismiche prese a riferimento sono riportate nell'ALL.15 "Risultati delle indagini sismiche".

3. INQUADRAMENTO GEOGRAFICO E GEOLOGICO STRUTTURALE

La porzione in esame del territorio comunale di Bientina ricade nella parte centro occidentale del fondovalle palustre bientinese in località Pratogrande, a nord dell'abitato del capoluogo e si colloca tra la strada provinciale Bientina - Altopascio, posta ad ovest, e la via del Puntone, posta ad est.

L'area è situata in sinistra idrografica del Canale Emissario, all'interno della zona produttiva di Pratogrande, ha un andamento pianeggiante (pendenze comprese tra 0 e 5%) e si trova ad una quota altimetrica media di circa +8,0/8,5 m sopra il livello medio marino.

Da un punto di vista strutturale l'area in esame fa parte della più ampia depressione tettonica che comprende la Piana di Lucca a Nord e che a Sud prosegue con il graben della Val d'Elsa. Questa struttura depressiva costituisce uno dei bacini intermontani che cominciarono a delinearsi nell'Appennino Settentrionale a partire dal Miocene superiore a seguito della fase distensiva che iniziò ad interessare la catena. La zona si colloca nella regione situata a Nord del basso corso dell'Arno e fu occupata, probabilmente a partire dal Pliocene inferiore, da un

vasto bacino lacustre impostato sulla depressione tettonica all'interno della quale si sono depositati un complesso di terreni neogenico-quaternari la cui successione è riconducibile a due cicli principali.

Nel Pleistocene inferiore la depressione era occupata da un vasto lago, separato ad Est dai rilievi del Monte Albano da una depressione sub parallela (Bacino di Firenze); il lago confluiva a Sud, nella zona di Bientina, nel più vasto Sinus pisanus, un golfo marino, poi sede della Piana di Pisa.

Tra la fine del Pleistocene inferiore e parte del Pleistocene superiore l'area della depressione fu interessata da episodi diversificati di sollevamento e da cicli di erosione e sedimentazione fluviale, che portarono alla formazione dei rilievi delle colline di Montecarlo-Altopascio-Cerbaie che dal tardo Pleistocene separano la Piana di Lucca - Padule del Bientina dalla Piana di Pescia-Montecatini - Padule di Fucecchio.

Successivamente, in concomitanza delle vicende climatiche würmiane, l'area attuale della pianura lucchese fu percorsa, modellata e alluvionata dal F. Serchio il cui alveo, oggi sepolto dai sedimenti più recenti della pianura, dirigeva il suo tracciato verso la zona depressa del Bientina e di qui confluiva nell'Arno all'altezza di Calcinaia. In seguito il progressivo innalzamento del letto dell'Arno impedì il deflusso delle acque del Serchio che attraverso alterni episodi di alluvionamento ed impaludamento, specie nel Bientinese, portarono al colmamento della pianura.

In tempi storici (dal VII al XVI secolo d.C.) nella pianura lucchese tutto il sistema del Serchio venne regimato con una serie di interventi idraulici che hanno portato alla situazione attuale, rimasero tuttavia vaste porzioni di impaludamento nelle aree di pianura più depresse, di cui *il lago di Bientina (o Sesto)* rappresenta l'esempio più importante; aree che vennero progressivamente drenate e bonificate con canalizzazioni che in gran parte furono realizzate in corrispondenza degli alvei abbandonati del Serchio.

In particolare la bonifica dell'area del Bientina ebbe il suo momento culminante nel 1859, quando fu realizzata la "botte" sotto il letto dell'Arno ed entrò in funzione l'emissario che permise il deflusso delle acque del lago fino al mare. I risultati non furono però del tutto positivi in quanto vaste plaghe di terreno rimasero paludose: i possessori di una parte del terreno da bonificare, unitisi in consorzio verso il 1907, provvidero successivamente all'installazione di idrovore per il risanamento idraulico dei terreni mediante il sollevamento meccanico delle acque.

La porzione di fondovalle in esame è quindi caratterizzata da depositi alluvionali argillosi che poggiano sui depositi prevalentemente ghiaiosi e sabbiosi del Pleistocene superiore e medio delimitati, verso il basso, dai sedimenti argillosi del Villafranchiano.

4. CARATTERISTICHE GEOLOGICHE E GEOMORFOLOGICHE

Per quanto riguarda la geologia di superficie, i depositi affioranti in un ampio intorno della zona interessata dalla Variante sono cartografati e distinti nell'**ALL.7** "Carta geologica" (estratta dagli elaborati a supporto del POC adottato) ed in particolare sono rappresentati i seguenti depositi di fondovalle:

- Depositi alluvionali recenti e attuali - Olocene : sono costituiti in prevalenza da limi (b11), argille ed argille limose (b1a) ed in subordine da sabbie, sabbie limose e ghiaie (b1s); si tratta di sedimenti in rapporto variabile sia verticalmente che orizzontalmente, la loro tipologia è da mettere in relazione alla vicinanza dell'antico corso dell'Arno oltre alla possibile presenza dell'antico corso del Serchio;

- Depositi lacustri e di colmata - Olocene : riempimento di terreni bassi o paludosi prodotto da sedimenti fini prevalentemente argillosi con presenza più o meno abbondante di sostanza organica indecomposta (e2a) che si estendono per gran parte della porzione centro settentrionale della piana bientinese e per diversi metri in profondità con variazioni laterali e verticali dovute alla continua instabilità degli ambienti lago-palustri; tali terreni possono presentare, soprattutto in superficie, un alto grado di saturazione in acqua che associato con una elevata presenza di sostanza organica possono conferire loro un grado elevato di compressibilità.

L'area interessata dalla Variante è quindi caratterizzata, in superficie, da terreni alluvionali fini a composizione prevalentemente argillosa.

La ricostruzione di una sezione geologica, contenuta negli studi di MS1 adottati e riportata nell'**ALL.8 "Sezione geologica"**, mostra in sintesi l'andamento geologico schematico del sottosuolo dell'area in esame; nella sezione che si estende da sud-sud ovest a nord-nord est, vengono messi in evidenza i sedimenti alluvionali di copertura del fondovalle (stimati dai 70 ai 90 metri di spessore) sovrastare i depositi pliocenici costituenti il substrato geologico locale.

Per quanto riguarda gli aspetti geomorfologici presenti in un ampio intorno della zona in esame, questi sono cartografati e distinti nell'**ALL.9** "Carta geomorfologica" (estratta dal POC adottato) ed in particolare sono rappresentati i seguenti elementi:

Processi e forme dovuti alle acque correnti superficiali

- alveo fluviale abbandonato (paleoalveo);

Attività, forme e depositi di origine antropica

- argine artificiale (con particolare riferimento al vicino canale emissario);
- depressioni morfologiche (area maggiormente interessata negli ultimi vent'anni da fenomeni di subsidenza indotta, tale perimetrazione deriva dalle indagini idrogeologiche svolte dai geologi F. Mezzetti e G. Nolledi per il controllo dello stato della falda sotterranea del padule di Bientina utilizzata per scopi potabili eseguito per conto sia dell'Amministrazione Comunale di Bientina che dell'Autorità di Bacino del Fiume Arno e del Fiume Serchio e riferita alla possibile evoluzione del dissesto);
- terreno di riporto (con particolare riferimento ai rilevati arginali e stradali).

L'area in esame non risulta interessata dall'evoluzione di alcun processo geomorfologico significativo.

Per quanto riguarda gli aspetti legati alla pericolosità geologica, negli elaborati del POC adottato ai sensi del DPGR 5/R/2020, per gli aspetti geomorfologici (in coerenza con quanto previsto dal PAI) e di cui riportiamo un estratto nell'**ALL.10** "Carta della pericolosità geologica", l'area in esame oggetto di Variante è interamente definita a pericolosità geologica media "G.2" in quanto caratterizzata da "aree con elementi geomorfologici, litologici e giaciturali dalla cui valutazione risulta una bassa propensione al dissesto".

Per quanto riguarda la cartografia del Progetto di PAI (Piano Assetto Idrogeologico) "dissesti geomorfologici" dell'Autorità di Bacino Distrettuale dell'Appennino Settentrionale-Bacino del Fiume Arno (adottato con Del. Conf. Istituz. Perm. n.28 del 21/12/2022) inerente la perimetrazione delle aree con pericolosità da frana e da dissesti di natura geomorfologica, facciamo presente che la zona in esame non rientra in alcuna delle perimetrazioni di pericolosità.

5. CARATTERISTICHE GEOLOGICO-TECNICHE

Nel quadro conoscitivo di riferimento degli aspetti geologici a supporto del PSI adottato è presente anche la "Carta litotecnica", di cui riportiamo un estratto nell'ALL.11, dove si mette in evidenza che le caratteristiche dei terreni superficiali presenti nell'area in esame sono a composizione argillosa di consistenza limitata. Analoga considerazione emerge anche dalla "Carta geologico tecnica" elaborata a supporto degli studi di MS1 adeguati al DPGR 5/R/2020 e di cui riportiamo un estratto nell'ALL.12.

La ricostruzione della successione litostratigrafica del sottosuolo nell'area interessata dalla Variante urbanistica è stata basata sulla correlazione dei risultati di alcune indagini geognostiche di riferimento eseguite nell'area in esame ed in particolare sui risultati di due sondaggi a carotaggio continuo profondi 10 m (con prelievo ed analisi di laboratorio di due campioni indisturbati tra 1,5 e 2,0 m e tra 2,5 e 3,0 m di profondità), di tre prove penetrometriche dinamiche continue (con il solo scopo di accertare lo spessore dello strato superficiale più addensato) e di diverse prove penetrometriche statiche relative alla realizzazione dei fabbricati presenti al confine nord est del comparto in esame. L'ubicazione di queste indagini è evidenziata nell'ALL.13, mentre la relativa documentazione è riportata nell'ALL.14.

I risultati delle correlazioni litostratigrafiche hanno consentito, nel loro complesso, di definire con una certa attendibilità il contesto geologico del sottosuolo dell'area in esame che risulta caratterizzato da terreni superficialmente argillosi e limo argillosi fino a circa 8/10 m di profondità che passano a sabbie limose fino a circa 16/18 m di profondità ed ancora ad argille e argille limose fino a circa 30 m di profondità; seguono sedimenti mediamente più grossolani di ghiaie, sabbie e sabbie limose fino alla massima profondità investigata di 40 m dal p.c..

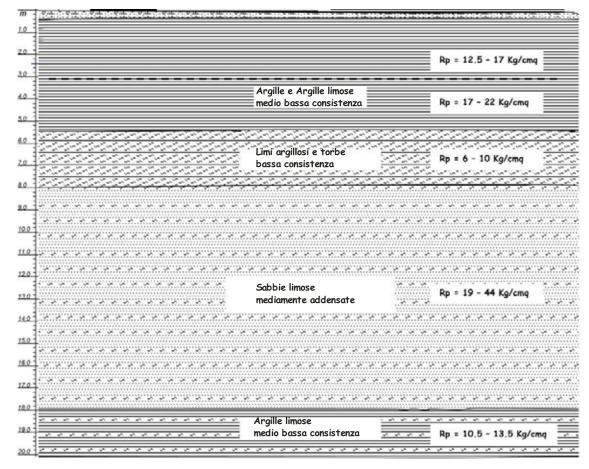
Riportiamo di seguito la successione stratigrafica rilevata e la stima dei valori medi di Rp (Kg/cmq), del peso di volume (y, t/mc), della resistenza al taglio (Cu = coesione non drenata - ϕ = angolo di attrito interno) e del modulo di deformazione edometrico (Mo, Kg/cmq) così come definiti nella relazione geologica del collega Dott. Graziano Graziani, redatta nel 2013 per la realizzazione del soppalco interno dell'edificio industriale della stessa Yachtline proponente la presente Variante urbanistica:

- dal piano di campagna a -0,3/0,5 m: terreno di copertura vegetale rimaneggiato;
- da -0,3/0,5 a -4,5/7,0 m: argille e argille limose di media bassa consistenza

```
    ♦ fino a -2,5/3,5 m
    ♦ da -2,5/3,5 a -4,5/7,0 m
    Rp = 12,5 - 17 Kg/cmq
    y = 1,80 - 1,85 t/mc
    Cu = 0,60 - 0,80 Kg/cmq
    φ = 0°
    Mo = 45 - 55 Kg/cmq
    Φ = 0°
    Mo = 55 - 70 Kg/cmq
```

all'interno di questo strato sono stati prelevati due campioni indisturbati tra -1,5 e 2,0 m (a) e tra -2,5 e 3,0 m (b), sul quale sono state effettuate le seguenti determinazioni:

- a) caratteristiche fisiche: y (peso di volume allo stato naturale) = 18,0 KN/mc Wn (contenuto d'acqua allo stato naturale) = 32,0 % taglio diretto CD: Cu (coesione consolidata drenata) = 20,4 KPa ϕ = 22°
- b) caratteristiche fisiche: y (peso di volume allo stato naturale) = 19,09 KN/mc
 Wn (contenuto d'acqua allo stato naturale) = 31,77 %
 compressione assiale non confinata: Cu (coesione non drenata) = 60,3 Kpa (valore minimo)
- da -4,5/7,0 a -7,5/10,0 m: limi argillosi e argille poco consistenti con livelli organici


$$Rp = 6 - 10 \text{ Kg/cmq}$$

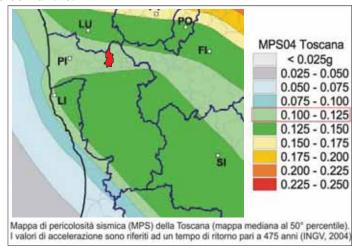
 $y = 1,80 - 1,85 \text{ t/mc}$
 $Cu = 0,30 - 0,50 \text{ Kg/cmq}$
 $\phi = 0^{\circ}$
 $Mo = 20 - 45 \text{ Kg/cmq}$

- da -7,50/10,0 a 16,0/18,0 m: sabbie limose mediamente addensate con livelletti di limi argillosi teneri
 - per le sabbie
 Rp = 19 44 Kg/cmq
 y = 1,90 1,95 t/mc
 Cu = 0,0 Kg/cmq
 φ = 28° 32°
 Mo = 80 130 Kg/cmq

- per i limi argillosi
 Rp = 6 7 Kg/cmq
 y = 1,75 t/mc
 Cu = 0,30 0,35 Kg/cmq
 φ = 0°
 Mo = 25 30 Kg/cmq
- da -16,0/18,0 a -20,0 m: argille limose di media bassa consistenza

$$\begin{split} Rp &= 10.5 \text{ - } 13.5 \text{ Kg/cmq} \\ y &= 1.80 \text{ - } 1.90 \text{ t/mc} \\ Cu &= 0.50 \text{ - } 0.60 \text{ Kg/cmq} \\ \varphi &= 0^{\circ} \\ Mo &= 40 \text{ - } 45 \text{ Kg/cmq} \end{split}$$

Le indagini geognostiche di riferimento, hanno dunque messo in risalto la presenza di terreni superficiali caratterizzati da una certa omogeneità orizzontale e proprietà geotecniche da medio-basse a basse; l'assetto litostratigrafico appena descritto viene comunque sintetizzato anche nella seguente sezione litotecnica.


Per quanto riguarda la valutazione della potenzialità di liquefazione dei terreni facciamo presente che il potenziale di liquefazione prodotto per tensioni cicliche derivate da un evento

tellurico, nasce dall'istantaneo incremento di pressioni neutre sottoposte all'accelerazione sismica che possono comportare il totale annullamento delle pressioni effettive intergranulari, determinando il completo decadimento della resistenza tangenziale di un terreno a comportamento esclusivamente granulare. Perché ciò possa accadere occorre che il sedimento non sia dotato di coesione e che il drenaggio non sia talmente rapido da avvenire istantaneamente; per tali motivazioni, soltanto i depositi sabbiosi fini monogranulari, saturi e non addensati risultano soggetti a tale tipo di rischio. Nel nostro caso si ha una certa frazione granulare nell'intervallo fra circa 8 e 18 metri di profondità e riprendendo quanto verificato nella relazione geologica del collega Graziani del 2013 a supporto della pratica edilizia della vicina Yachtline con il metodo di Andrus-Stokoe, di seguito riportato in tabella, si può escludere il rischio di liquefazione per tali terreni.

			VALU	TAZIONE DEL POTENZIAL (da prove sismiche a rif		ZI	ONE	
	_			Metodo semplifi		=		
				Metodo di Andrus e Stokoe (19	7) modificato			
P	ARA	METRI						
		1,91	g/cm³					
C _{an}		3,82	kg/cm²					
Cart		1,8225	kg/cm²	R×	-Residence at	tagi	o mobilitata	
profondità della prova	9	2000	cm	Te FO			forro dal sigma Jeontemuto nella sabbia	
profondhà faida	-	2,5	cm	Vs				
y so			g/cm*					
Pressing peutra	=	1,9975	kg/cm²					
1	•	20	m					
V _m	-	210						
Vau	-	220	mis	FG+5% FG+20% FG+35% 220 210 200				
V _{at}		180,74						
M	3	6,0						
Mse		2,09	s+M67/5					
		1,77	a+Mb7.5					
			FORM	uce		i c	Pus	ULTATE
Var		V.(Ne)1.1					180,74	Var
R		0,03° (V ₁₂ 21	00)' - [0,3/[V	ne-Yarll-(0.5/Ymc)			9,116832733	R
1	*	0,65*((a,/g))'(α/σ))'	r _c +1.MSF	\$65KE7.5 \$65KE7.5		0,070647125 0,08336135	Teps Tests
00		0,119			T. Sermica:	Ī	-100000100	1.46
Ta-		0,91						
Fs=R/T	>	4			99 MS7.5	8	1,653750765	Verificato Fr
400.0001					se Mt.7.5		1,401521609	Verificate Fr

6. CARATTERISTICHE SISMICHE

Nella classificazione sismica della Regione Toscana (DGRT n.421 del 26/05/2014) il territorio comunale di Bientina si colloca in zona sismica 3 (pericolosità sismica bassa che può essere soggetta a scuotimenti modesti) caratterizzata da accelerazione orizzontale massima convenzionale (ag) di ancoraggio dello spettro di risposta elastico di 0,100-0,125g per tutto il territorio comunale.

In epoca storica il sisma più intenso registrato nella Valdera è quello dell'Agosto 1846 che colpì la zona di Orciano Pisano, S. Luce e Lorenzana con intensità massima fino al X° grado della scala Mercalli provocando danni notevoli e numerose vittime; di altri terremoti di intensità minore (V° - VI° grado) si ha notizia tra il Dicembre 1896 ed il Luglio 1897 con epicentro Pontedera.

Chianni fa registrare un sisma del V° grado nel Luglio 1930 ed uno del VII° grado nel Novembre 1947, Vicopisano uno del V° grado nel 1930. Scosse ancora più deboli (III° e IV° grado) e con epicentro sempre nei dintorni di Pontedera sono avvenute nel 1934, 1977 e 1978. Per quanto riguarda Bientina da segnalare la pubblicazione sul Bollettino Sismico Italiano INGV di un terremoto avvenuto il 20.11.1995 a sud est del capoluogo (zona Santa Colomba) e ad una profondità di 5 km con magnitudo di durata Md 3.2 ovvero in scala Richter 2.7.

Per la valutazione degli aspetti sismici dell'area in esame abbiamo fatto riferimento agli studi di MS1 a supporto del POC adottato e ad alcune indagini geofisiche costituite da una prova sismica in foro tipo Down-Hole, ad un profilo geofisico con metodologia Masw ed a una misure di sismica passiva su stazione singola con strumento Tromino.

L'ubicazione di tali indagini è riportata nell'ALL.13 mentre la relativa documentazione è riportata nell'ALL.15 "Risultati delle indagini sismiche".

Una stima della categoria di sottosuolo dell'area interessata dalla Variante viene fornita, con maggiore attendibilità, dalla prova sismica diretta di tipo Down-Hole i cui risultati sono riassunti nella seguente tabella:

Tabella delle velocità e delle caratteristiche relative ad ogni metro di profondità.

Vp (m/s)	Vs (m/s)	g (kN/mc)	ni.	G (MPa)	Ed (MPa)	E (MPa)	Ev (MPa)
681.71	280.21	22.37	0.3983	179.11	1060.10	500.90	821.29
701.66	278.78	20.93	0.4063	165.87	1050.76	466,53	829.59
689.09	263.58	20.17	0.4143	142.89	976.65	404.18	786.12
652.27	244.23	19.54	0.4185	118.85	847.73	337.18	689.26
656.34	222.22	18.92	0.4353	95.27	831.11	273.48	704.08
702.84	226.28	18.80	0.4422	98.16	947.00	283.13	816.12
682.36	243.71	18.94	0.4269	114.71	899.26	327.36	746.31
694.11	234.84	18.67	0.4354	104.99	917.23	301.41	777.24
734.38	199.83	17.92	0.46	72.97	985.51	213.07	888.21
713.11	210.21	18.03	0.4524	81.24	934.95	235.99	826.63
668.94	218.89	18.11	0.44	88.48	826.37	254.82	708.39
625.20	210.27	17.87	0.4362	80.57	712.27	231.43	604.84
757.46	199.78	17.60	0.4626	71.63	1029.70	209.53	934.19
721.29	189.84	17.34	0.4628	63.72	919.92	186,42	834.95
674.17	194.37	17.38	0.4547	66.96	805.50	194.81	716.23
632.55	206.46	17.57	0.4404	76.37	716.87	220.01	615.04
708.72	215.91	17.70	0.4488	84.14	906.57	243.80	794.39
740.69	199.37	17.34	0.4609	70.28	970.07	205.34	876.36
800.32	178.25	16.85	0.4739	54.59	1100.54	160,92	1027.7
776.22	186.57	16.99	0.4693	60.31	1043.86	177.23	963,45
801.54	203.24	17.30	0.4656	72.87	1133.38	213.60	1036.23
748.22	209.67	17.39	0.4574	77.96	992.74	227.24	888,80
808.93	214.22	17.44	0.4623	81.61	1163.72	238.68	1054.90
790.14	210.69	17.34	0.4617	78,49	1103.92	229.46	999.26
749.12	221.94	17.52	0.4519	88.00	1002.57	255.53	885.24
790.70	219.09	17.44	0.4584	85.36	1111.85	248.98	998.04
830.22	206.08	17.17	0.4672	74.36	1206.80	218.20	1107.66
837.38	205.27	17.13	0.468	73.60	1224.85	216.09	1126.73
830.70	230.83	17.57	0.4582	95.46	1236.34	278,40	1109.0
804.18	214.11	17.25	0.4619	80.64	1137.56	235.78	1030.0
824.20	205.78	17.07	0.4668	73.71	1182.44	216.24	1084.16

E' stato ricavato un valore di velocità delle onde di taglio nei primi 30 m di profondità con la seguente espressione:

$$V_{S30} = \frac{30}{\sum_{i=1,N} \frac{h_i}{V_i}}$$

da cui secondo il metodo diretto si ottiene una $V_{\rm S30} = 213,68$ m/s mentre secondo il metodo intervallo una $V_{\rm S30} = 197,88$ m/s ricavando per entrambe i casi una categoria di sottosuolo di tipo "C" sulla base della seguente tabella contenuta nelle NTC 2018.

Tabella 3.2.II - Categorie di sottosuolo

Categoria	Descrizione
A	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di $V_{s,30}$ superiori a 800 m/s, eventualmente comprendenti in superficie uno strato di alterazione, con spessore massimo pari a 3 m.
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di $V_{s,30}$ compresi tra 360 m/s e 800 m/s (ovvero $N_{SPT,30} > 50$ nei terreni a grana grossa e $c_{u,30} > 250$ kPa nei terreni a grana fina).
C	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di $V_{s,30}$ compresi tra 180 m/s e 360 m/s (ovvero $15 < N_{SPT,30} < 50$ nei terreni a grana grossa e $70 < c_{u,30} < 250$ kPa nei terreni a grana fina).
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di $V_{s,30}$ inferiori a 180 m/s (ovvero $N_{SPT,30} < 15$ nei terreni a grana grossa e $c_{u,30} < 70$ kPa nei terreni a grana fina).
E	Terreni dei sottosuoli di tipo C o D per spessore non superiore a 20 m , posti sul substrato di riferimento (con $V_s > 800$ m/s).

Il profilo geofisico realizzato con metodologia indiretta Masw, ha fornito un risultato di $V_{\rm S30}$ = 178 m/s , indicando quindi una categoria di tipo "D".

Le indagini sismiche di riferimento avvalorano comunque la presenza nei primi 30 metri di sottosuolo di orizzonti caratterizzati da differente risposta sismica, sebbene sempre riferiti a valori compresi tra 128 e 280 m/s. Tale considerazione unita a quella litostratigrafica di deposti più superficiali caratterizzati da velocità medie dell'ordine di 200 m/s passanti in profondità con depositi più grossolani e compatti (come le ghiaie riscontrate nel sondaggio S14 al di sotto dei 32 m di profondità) caratterizzati da velocità dell'ordine di 400/450 m/s, possa far propendere a non escludere possibili fenomenologie di amplificazione sismica.

A tal proposito la misura dei microtremori indica la presenza di picchi significativi H/V a basse frequenze pari a un valore di 1,31 ed ampiezza pari a un valore di 5,4 con un significato attribuibile, anche in questo caso, di tipo stratigrafico. Infatti una stima preliminare svolta prendendo a riferimento la Vs30 del sottosuolo in esame (pari a circa 200 m/s) ed applicando la seguente formula di correlazione tra la velocità e la frequenza si ottiene una profondità di:

$$H = V_S/4f0 = 200 \div (4x1.31) = 38 \text{ m}$$

indicativa di un passaggio litologico intorno a 35/40 m di profondità a terreni sottostanti di maggiore consistenza e velocità.

Sulla base di queste informazioni e dei criteri degli ICMS nazionali e delle specifiche regionali di cui al DGRT 144/2015 è stata redatta, negli studi di MS1, una cartografia dove sono rappresentate le misurazioni di frequenza ed ampiezza acquisite presso le stazioni di rilevazione del microtremore ed una cartografia di sintesi delle microzone omogenee in prospettiva sismica. Un estratto di tali elaborati relativi all'area in esame viene riportato nell'ALL.16 "Carta delle frequenze" e nell'ALL.17 "Carta delle MOPS".

Nella cartografia Mops l'area in esame è stata di conseguenza individuata come zona stabile suscettibile di amplificazioni locali ed identificata con la sigla 2005 corrispondente ad una specifica sezione stratigrafica tipo riportata nell'ALL.17.

La pericolosità sismica locale dell'area è stata quindi ricondotta ad una classe elevata S.3 in quanto zona alluvionale suscettibile di amplificazione stratigrafica del moto del suolo a causa sia della differenza di risposta sismica tra substrato e copertura che per terreni di fondazione scadenti. L'estratto cartografico relativo alla pericolosità sismica locale della zona in esame è riportato nell'ALL.18 "Carta della pericolosità sismica locale".

7. CARATTERISTICHE IDROGEOLOGICHE

La porzione in esame del fondovalle bientinese è caratterizzata da una rete idrografica complessa, costituita da fossi e canali di scolo con le loro relative arginature, zone di colmata, sponde lacustri, scavi e riporti di terreno per realizzare opere idrauliche ed interventi di bonifica che si sono succeduti numerosi in tempi storici.

Le precipitazioni meteoriche che interessano quest'area di pianura alluvionale, costituita da terreni argillosi e palustri, afferiscono nella rete secondaria di scolo delle acque e da qui vengono convogliate verso ovest dove si immettono nel Canale Emissario consentendo così il deflusso delle acque del fondovalle. Le idrovore attualmente in funzione nel padule di Bientina costituiscono l'elemento fondamentale del sistema di bonifica a scolo meccanico, in atto fin dai primi del 900 attraverso vari comparti di sollevamento fino all'attuale conformazione.

Nell'**ALL.19** "Reticolo idrografico regionale" è stata messa in evidenza la rete idrografica regionale costituita, in questa porzione di fondovalle bientinese interessata dalla presente Variante, da fosse di scolo secondarie recapitanti verso ovest nel Canale Emissario ed in particolare dal fosso Prato Grande (che scorre al confine nord del comparto in esame), dal fosso Arginetto (che scorre al confine sud del comparto in esame).

Nella "Carta idrogeologica" dell'ALL.20 estratta dagli elaborati di supporto al POC, sono individuate, in un intorno significativo della zona in esame, i punti relativi alla risorsa idrica e le unità idrogeologiche distinte in funzione della permeabilità dei terreni. L'area in esame è contraddistinta da l'unità P4 relativa a terreni con permeabilità primaria da molto bassa ad impermeabile.

Per quanto riguarda l'acquifero circolante nei terreni più superficiali è di modesta consistenza, direttamente influenzato dal regime delle piogge, ha sede nei primi 10-15 m di profondità dal piano di campagna, in quegli interstrati a maggiore permeabilità presenti nei depositi alluvionali argilloso limosi.

L'acquifero confinato di fondovalle è invece formato da un orizzonte principale superiore corrispondente ai depositi alluvionali a prevalenza sabbiosa e ghiaiosa ("Conglomerato del Serchio"), che perviene fino ad una profondità massima di 65-70 m dal piano di campagna e da orizzonti secondari inferiori e discontinui, in cui si possono distinguere vari livelli permeabili sabbioso-ghiaiosi o conglomeratici, con intercalazioni di "aquitards" e di "aquicludes" formati da sabbie limose, limi ed argille.

La piezometria dell'acquifero più superficiale presente nell'area in esame oscilla mediamente da 0,5 a 3,5 metri dal p.c. in funzione dei vari periodi di ricarica dell'anno idrologico, così come evidenziato sia nel quadro conoscitivo piezometrico comunale che dai rilievi piezometrici eseguiti al termine delle prove penetrometriche di riferimento (vedi sezione litotecnica).

8. CARATTERISTICHE IDRAULICHE

Gli aspetti idrologico idraulici sono stati trattati in un apposita relazione redatta dall'incaricato Ing. Alessio Gabbrielli di Scandicci (FI) a supporto della presente Variante, dove viene verificata la compatibilità della previsione urbanistica e vengono individuate le relative prescrizioni di fattibilità idraulica; si rimanda quindi a tale elaborato.

In questo paragrafo facciamo solo presente che il quadro di pericolosità idraulica del PGRA del Comune di Bientina è stato recentemente aggiornato ai sensi della L.R. 41/2018 con Decreto del Segretario Generale dell'Autorità di Bacino Distrettuale dell'Appennino Settentrionale n.08 del 27/01/2021 e che, come riportato nell'estratto cartografico dell'ALL.21 "Carta della pericolosità da alluvione" del PGRA, il comparto in esame è caratterizzato da prevalente pericolosità da alluvione elevata, P3, con battenti localmente anche piuttosto significativi (soprattutto nella parte Est). La magnitudo idraulica dell'area è principalmente di classe moderata, ma nella parte Est è presente un ampio settore in magnitudo idraulica severa, per effetto di battenti anche superiori a 50 cm (la velocità della corrente è ovunque inferiore ad 1 m/s).

A fronte di questo scenario, per la fattibilità idraulica della previsione urbanistica è necessario applicare i criteri indicati dalla L.R. 41/2018 e s.m.i. (in particolare, per il caso in esame, sono significative le modifiche apportate dalla L.R. 7/2020) ai vari settori del comparto a diversa destinazione urbanistica.

9. CONDIZIONI DI FATTIBILITA'

Le condizioni di fattibilità vengono individuate in funzione delle situazioni di pericolosità e di rischio per gli aspetti geologici, sismici, di rischio da alluvioni ed a problematiche idrogeologiche del territorio in esame e rapportate alla sua destinazione urbanistica ed al tipo di interventi ivi previsti.

I dati acquisiti che sono stati esposti e discussi nei paragrafi precedenti hanno consentito una verifica del quadro conoscitivo geologico nel rispetto del DPGR 5/R/2020 ed in particolare l'analisi delle caratteristiche geomorfologiche e geotecniche, il supporto degli studi di MS1 e delle verifiche alla liquefazione ha condotto alla conferma delle pericolosità per quanto riguarda gli aspetti geologici (G.2) e sismici (S.3).

Le condizioni di fattibilità per le previsioni urbanistiche della presente Variante risultano quindi essere:

- Fattibilità in relazione agli aspetti geologici: il comparto in esame ricade in pericolosità geologica G.2 in quanto area con elementi geomorfologici, litologici e giaciturali dalla cui valutazione risulta una bassa propensione al dissesto, di conseguenza le condizioni di attuazione sono indicate in funzione delle specifiche indagini da eseguirsi a livello edificatorio, al fine di non modificare negativamente le condizioni ed i processi geomorfologici presenti nell'area. Gli approfondimenti di indagine consistono, anche nel rispetto del D.P.G.R. n.1/R/2022, nell'esecuzione di verifiche geotecniche dirette volte ad investigare i terreni effettivamente interessati dalle nuove costruzioni, definendo il modello geologico e geotecnico del sottosuolo attraverso l'esecuzione di prove geognostiche, sondaggi, analisi di laboratorio delle terre, ecc.; valutando lo spessore ed il grado di consistenza o di addensamento dei litotipi presenti, la variazione verticale e laterale delle loro caratteristiche geomeccaniche e la verifica della consistenza dei cedimenti. Deve essere inoltre valutata la necessità di proporre misure di attenuazione del rischio quali accorgimenti tecnico costruttivi particolari e fondazioni speciali.

- Fattibilità in relazione agli aspetti sismici: il comparto in esame ricade in pericolosità sismica S.3 in quanto zona stabile suscettibile di amplificazioni locali caratterizzata da un alto contrasto di impedenza sismica (zona 2005 delle Mops), di conseguenza le condizioni di attuazione sono quelle volte ad un adeguamento o miglioramento sismico. In queste zone caratterizzate da un alto contrasto di impedenza sismica tra copertura e substrato rigido o entro le coperture stesse entro alcune decine di metri, è da effettuare una specifica campagna di indagini geofisiche (quali, ad esempio, profili sismici a riflessione o rifrazione, prove sismiche in foro e, ove risultino significative, profili Masw) e geognostiche (quali, ad esempio, pozzi o sondaggi, preferibilmente a carotaggio continuo) che definisca spessori, geometrie e velocità sismiche dei litotipi sepolti per valutare l'entità del (o dei) contrasti di rigidità sismica tra coperture e bedrock sismico o entro le coperture stesse; la valutazione dell'azione sismica mediante l'analisi di risposta sismica locale è regolamentata dal DPGR 1/R/2022. In presenza di terreni di fondazione particolarmente scadenti, sono da effettuare adeguate indagini geognostiche e verifiche geotecniche finalizzate alle verifiche dei cedimenti le cui tipologie e quantità devono anche ottemperare a quanto impartito dall'Allegato 1-art.5 Regolamento 1/R/2022.
- Fattibilità in relazione agli aspetti idraulici: vista la preponderanza di tali aspetti ai fini della fattibilità, riportiamo in questa sede una sintesi delle valutazioni e prescrizioni contenute nella relazione idrologico idraulica dell'Ing. A. Gabbrielli, a cui si rimanda per ulteriori approfondimenti.

Per la realizzazione dei nuovi fabbricati viene fatto riferimento a quanto previsto dalla L.R. 41/2018 e s.m.i., in particolare dall'art.11 ("Interventi di nuova costruzione in aree a pericolosità per alluvioni frequenti o poco frequenti"), mentre per le viabilità, i piazzali ed i parcheggi è invece richiamato l'art.13 ("Infrastrutture lineari o a rete").

Posizionando i nuovi fabbricati esternamente alle aree caratterizzate da magnitudo idraulica severa (settore Est del comparto), essi potranno essere realizzati a condizione che siano contestualmente realizzati interventi di sopraelevazione, senza aggravio delle condizioni di rischio in altre aree, di cui all'art.8, comma 1, lett.c) della stessa L.R. 41/2018.

Per la valutazione degli interventi di fattibilità idraulica è necessario tenere conto sia delle condizioni idrauliche alla trasformazione da applicarsi, ai sensi della L.R. 41/2018 e s.m.i., ai nuovi fabbricati e parte delle nuove viabilità (sopraelevazione), sia delle esigenze produttive specifiche per l'attività di logistica in previsione (necessita di ampi spazi coperti e scoperti, comunque impermeabilizzati); di conseguenza risulta necessario procedere ad un rialzamento a pari quota di tutte le zone del comparto interessate da fabbricati, viabilità, piazzali e parcheggi, ovvero la quasi totalità del comparto.

Potranno essere realizzati a quota leggermente inferiore, ma sempre superiore alla quota del massimo battente idraulico duecentennale, soltanto alcune porzioni di piazzale (quelle più prossime al perimetro esterno), oppure i parcheggi.

Tutte le aree esterne saranno poste in sicurezza idraulica, sia le aree allagabili a pericolosità da alluvione elevata, P3, con magnitudo severa (in cui non sono previsti i fabbricati ma solo i piazzali), che le aree prive di pericolosità, è applicato il principio della sopraelevazione così come definita dall'art. 8, comma 1, lett. c) garantendo il non aggravio del rischio in altre aree. Il massimo livello idrometrico duecentennale raggiunto sulla porzione di territorio di interesse è di circa 8.15 m s.l.m. e la proposta di intervento prevede un rialzamento del piano di posa dei nuovi fabbricati, con adeguato franco di sicurezza, alla quota minima di 9.00 m s.l.m., e del piano viario e dei piazzali ad una quota non inferiore a 8.75 m s.l.m..

I volumi sottratti alla libera esondazione delle acque dalla sopraelevazione saranno bilanciati dai volumi "restituiti" mediante incremento della capacita di accumulo in una porzione del comparto. Quest'ultima è individuata nelle aree verdi poste sul lato Est del comparto ed anche prevedendo la realizzazione, sempre nella parte Est del comparto, di due distinte vasche interrate.

Nei settori soprastanti le due vasche interrate è inoltre possibile prevedervi piazzali e/o parcheggi, in quanto sopraelevati e non in conflitto con la classificazione P3 o P2, e magnitudo severa.

Dal punto di vista tecnico, la soluzione prescelta per la realizzazione delle vasche è quella del sistema del tipo "Cupolex", consistente nella creazione di bacini artificiali delimitato da pareti in c.a., dotate di aperture su uno o più lati, e coperti con coppelle, o cupole, in plastica ad alta resistenza poggianti su una fitta maglia di tubi in PVC riempiti in calcestruzzo, in grado di sostenere e distribuire uniformemente carichi "industriali", previa formazione di una soletta superficiale. Sono consentite, e quindi al momento non ancora escluse, anche soluzioni strutturali alternative (sistemi a travi rovesce, pilotis), purché garantiscano il libero scorrimento delle acque all'interno della vasca ed un minimo ingombro delle strutture (ad esempio, la soluzione con "Cupolex" garantisce la disponibilità di un volume utile pari al 96% del volume lordo della vasca).

In aggiunta a queste vasche, la restante quota volumetrica da compensare per mantenere grosso modo inalterato il battente locale e le dinamiche idrauliche di zona, sarà garantita da un'ampia area di accumulo a cielo aperto (area verde), in cui verrà effettuato uno sbassamento a pari quota delle due vasche anzidette.

La superficie complessiva (lorda) delle due vasche ammonta a circa 8.800 mq, dati dalla somma dei circa 3.880 mq della vasca 1 (sotto il parcheggio pubblico nel settore Nord-Est) e dei circa 4.920 mq della vasca 2 (settore Sud-Est, al di sopra della quale e prevista un'area di stoccaggio di pancali a cielo aperto. Per entrambe le vasche la quota di fondo è fissata a 6.50 m s.l.m., ovvero circa 1.00 m sotto la quota media del terreno sulla medesima impronta allo stato attuale; questo consente di invasare sulla superficie della vasca un volume di circa 8.800 mc in più rispetto allo stato attuale conteggiato sulla medesima superficie.

Il collegamento tra area verde e vasche sarà regolato dalla presenza di alcune aperture lungo il lato Ovest, per la vasca 1, ed il lato Est, per la vasca 2. Tali aperture sono rappresentate da soglie sfioranti poste a quota pari 7.75 m s.l.m. tramite le quali l'acqua potrà entrare all'interno delle vasche stesse.

L'adiacente area verde, di superficie lorda pari a circa 9.600 mq, sarà posta alla medesima quota media di fondo (6.50 m s.l.m.).

Lateralmente ad essa (lato Est), scorrerà un nuovo fosso perimetrale, delimitato dalla vasca solo tramite un piccolo arginello sormontabile, con quota di sommità pari a 7.50 m s.l.m. In caso di allagamento a campagna, dapprima le acque impegneranno il fosso perimetrale; una volta superata la quota di 7.50 m s.l.m. andranno ad accumularsi nella vasca a cielo aperto. Soltanto dopo il raggiungimento di un livello idrometrico nell'area verde e nella campagna circostante superiore alla quota di 7.75 m s.l.m., le acque faranno il loro ingresso (attraverso bocche di presa) anche nelle due vasche interrate.

Dalla due vasche le acque potranno essere scaricate solo sul lato Nord, nel Fosso di Pratogrande, ma solo fino al livello di 7.75 m s.l.m., dopodiché per far rientrare l'acqua nella vasca a cielo aperto sarà necessario aprire le saracinesche ivi previste.

Il fosso perimetrale, che correrà lungo il lato Est del comparto, ha anche la funzione di mettere in collegamento idraulico il Fosso di Pratogrande, a Nord, con il Fosso Arginetto, cosi da favorire un riequilibrio dei livelli idrometrici che allo stato attuale, invece, sono leggermente sbilanciati verso Nord in virtù delle pendenze del terreno.

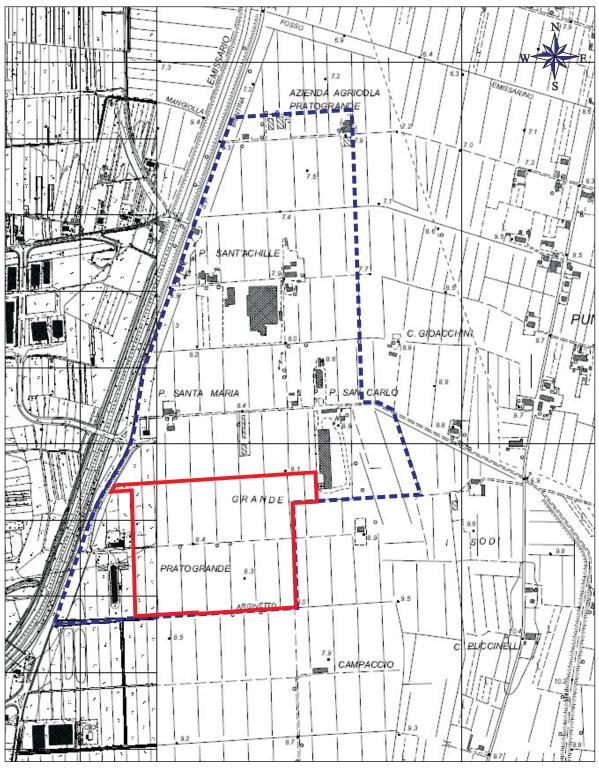
Questo fosso consentirà, quindi, una leggera riduzione delle acque dirette verso il Fosso di Pratogrande ed un leggero incremento delle acque sul Fosso Arginetto, che sarebbe maggiormente in grado di sostenerle. Inoltre esso ha anche la funzione di assicurare "il drenaggio delle acque verso un corpo idrico recettore garantendo il buon regime delle acque", come testualmente richiede la norma.

Sui lati Sud e Nord del comparto non sono previste modifiche alle aree adiacenti i due corsi d'acqua (mantenimento delle fasce di rispetto di 10 mt dai cigli di sponda di Fosso di Pratogrande e Fosso Arginetto), mentre nella fascia verde sul lato Ovest sarà probabilmente

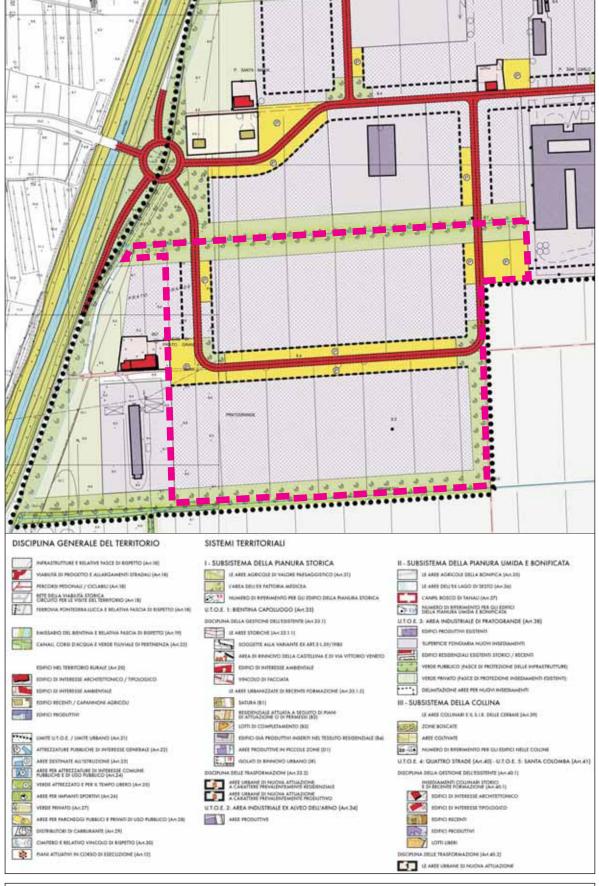
realizzato un piccolo fosso ai piedi del rilevato in modo da consentire il deflusso delle acque verso Nord e verso Sud, e contenere cosi eventuali ristagni.

Questi interventi indicati per la fattibilità idraulica sono stati verificati sia per via analitica (conteggiando i volumi sottratti ed i volumi compensati allo stato di progetto, nell'ipotesi di un fenomeno alluvionale assolutamente statico) che per via modellistica (implementando le modifiche morfologiche di progetto nel medesimo modello idraulico degli studi comunali e confrontando i risultati con quelli di stato attuale), al fine della dimostrazione del non aggravio del rischio in altre aree.

La relazione idraulica dell'Ing. A. Gabbrielli contiene inoltre la verifica della permeabilità ed invarianza idraulica e le prescrizioni per i nuovi attraversamenti dei corsi d'acqua, a cui si rimanda per i contenuti.


Nell'ALL.22 "Opere di messa in sicurezza idraulica" sono riportati alcuni estratti cartografici ripresi dalla relazione idraulica dell'Ing. A. Gabbrielli relativi sia alla planimetria del comparto di progetto con individuate le opere idrauliche prescrittive che alle sezioni tipo delle opere idrauliche previste.

Pisa, Febbraio 2024


Dott. Geol. Fabio Mezzetti

<u>ALLEGATI</u>

ALL.2 ESTRATTO R.U. STATO ATTUALE - scala 1:5.000

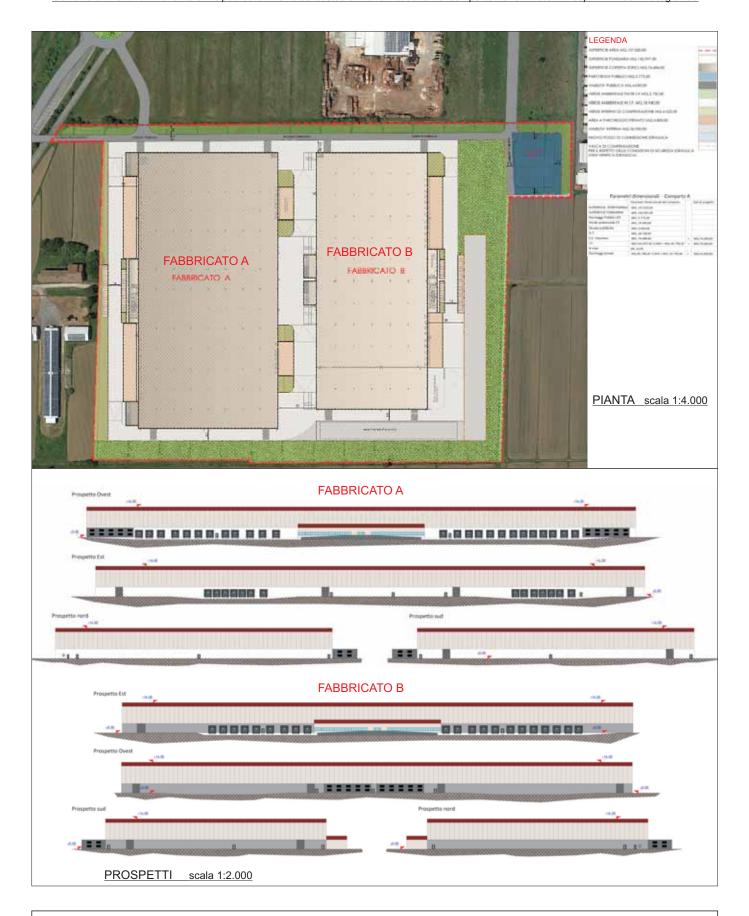
LEGENDA

Perimetro UTOE 3 Area Industriale Pratogrande

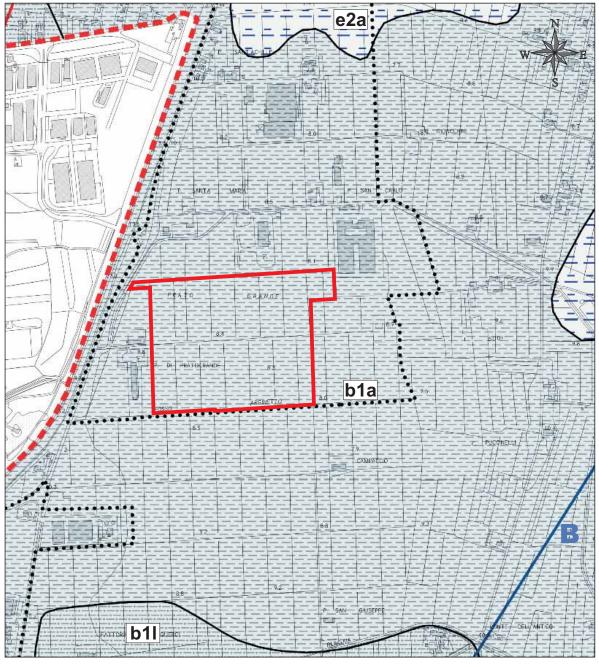
ALL.3 ESTRATTO R.U. STATO MODIFICATO - scala 1:5.000 LEGENDA

Perimetro UTOE 3 Area Industriale Pratogrande

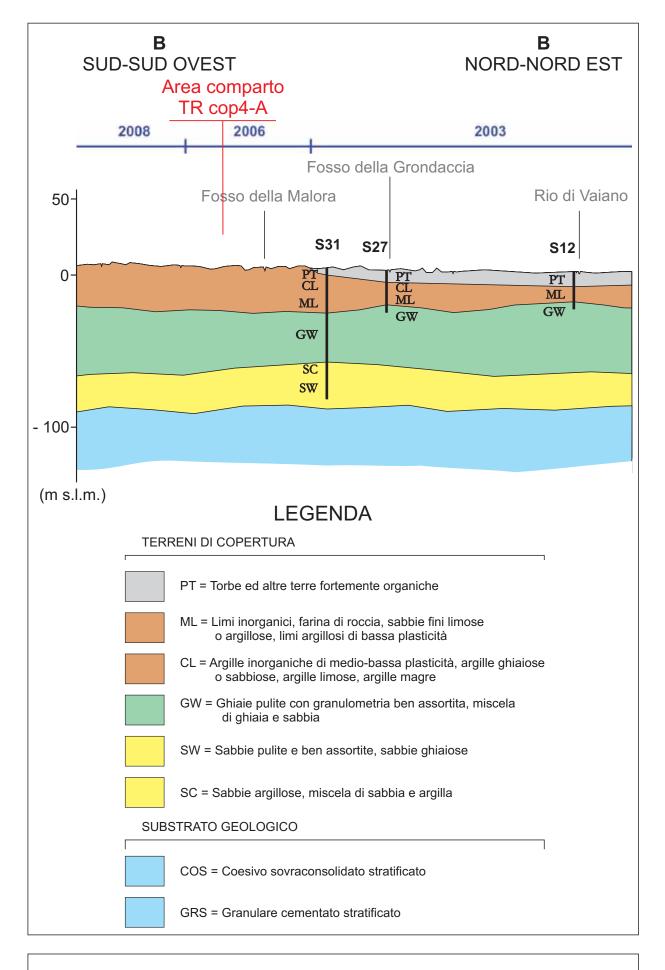
<u>ALL.4</u> ESTRATTO P.O. ADOTTATO STATO ATTUALE - scala 1:5.000 LEGENDA

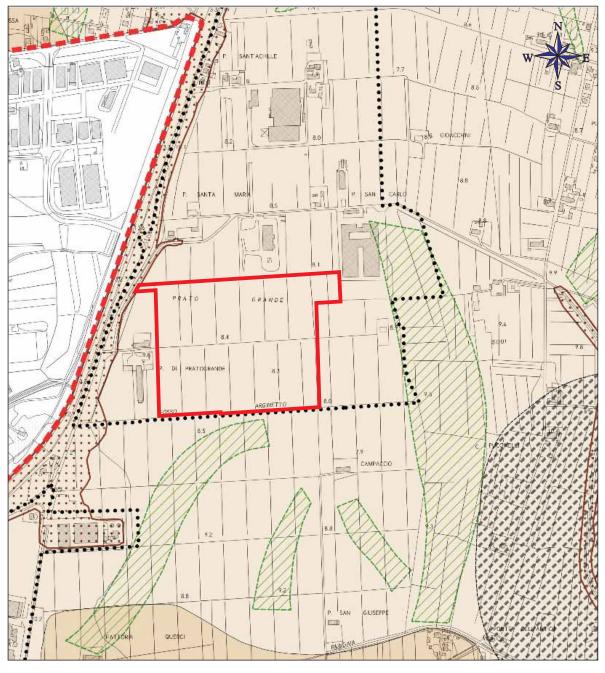

Perimetro UTOE 3 Area Industriale Pratogrande

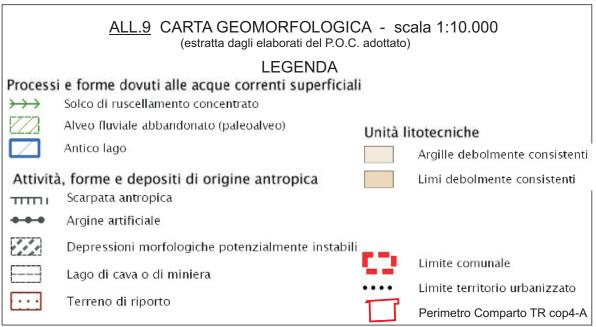
<u>ALL.5</u> ESTRATTO P.O. ADOTTATO STATO MODIFICATO - scala 1:5.000 LEGENDA

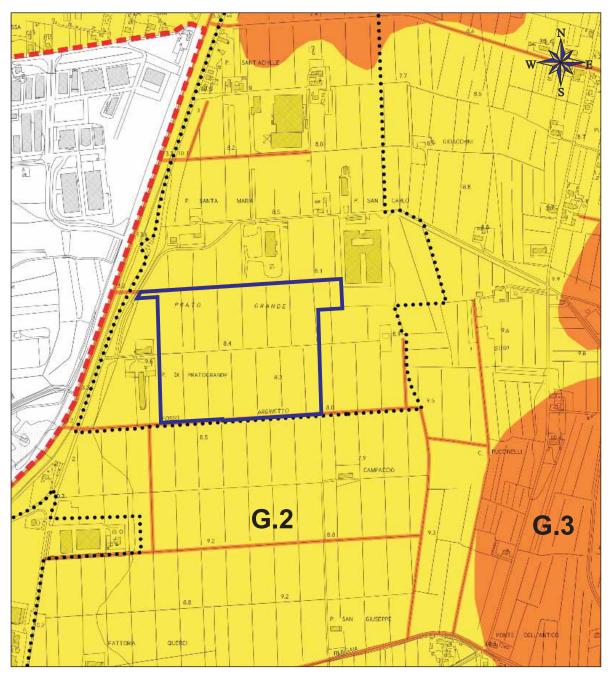


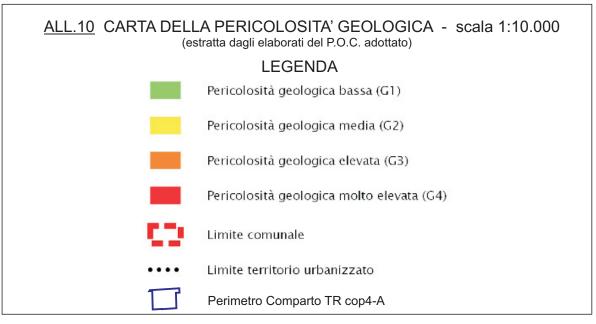
Perimetro UTOE 3 Area Industriale Pratogrande



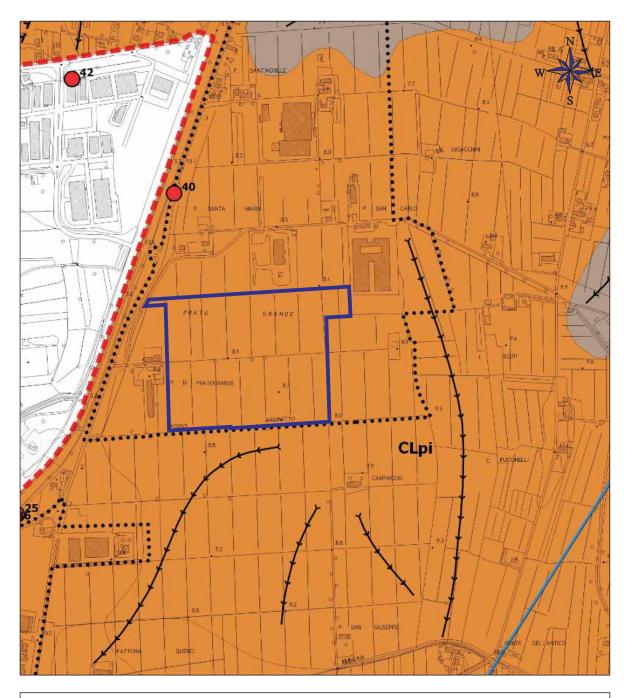








ALL.8 SEZIONE GEOLOGICA - scala 1:25.000



ALL.13 UBICAZIONE DELLE INDAGINI - scala 1:5.000 LEGENDA Sondaggio e Downhole Prova penetrometrica statica Prova penetrometrica statica on piezometro Stazione Hvsr Perimetro Comparto TR cop4-A

Comune di Bientina -	- Variante anticipatrice al P.O. e contestuale Piano Attuativo del comparto denominato TR cop4-A	in loc. Pratogrande
	ALL.14 RISULTATI DELLE INDAGINI GEOGNOSTICHE	

DATA: 23 - 07 - 2013	SONDAGGIO N° 1
UBICAZIONE: Bientina (PI) Via Gofi di Pecora	METODO PERFORAZIONE: Caratoggio continuo a rotazione
COMMITTENTE: Yachtline s.p.a.	DITTA ESECUTRICE: Ichnogeo s.a.s.

	f. dal p.c. Stratigrafia Descrizione litolo			7	VENACULE.
	oh.	Riporto grossolano			
1.40		Argille grigio-olivastre	C1 (-2.50/3.00)		
5.10		Limi argillosi grigi con livelli organici			
7.80		Sabbie e sabbie limose grigie			
	FE				
k					
	5.10	7.80	Argille grigio-olivastre Limi argillosi grigi con livelli organici Sabbie e sabbie limose grigie	Argille grigio-olivastre C1 (-2.50/3.00) Limi argillosi grigi con livelli organici Sabbie e sabbie limose grigie	Argille grigio-olivastre C1 (-2.50/3.00) Limi argillosi grigi con livelli organici Sabbie e sabbie limose grigie

56028 San Miniato Basso (PI) via Ilaria Alpi, 18/20 tel 0571/43213 fax 0571/403063 www.ichnogeo.it- info@ichnogeo.it

Ministero delle Infrastrutture e dei Trasporti Consiglio Superiore dei Lavori Pubblici

Laboratorio autorizzato - settori A e C decreto nº 54814 del 28/04/2006 rinnovo nº 3663 del 22/03/2012

PESO DI VOLUME

UMIDITA' NATURALE

norma di riferimento: UNI CEN ISO/TS 17892-2 norma di riferimento: UNI CEN ISO/TS 17892-1

deviazioni dalla norma: nessuna deviazioni dalla norma: nessuna

verbale di accettazione n° 114/13 del 23/07/2013 certificato di prova n° 0775/13 del 30/07/2013

Committente: **Dott. Geol. Graziano Graziani**Località: **Bientina (PI) - via Gofi di Pecora**

identificativo campione: S1 C1 tipologia: indisturbato

profondità nominale (m):2,5-3,0 contenitore: fustella metallica a pareti sottili

data di prelievo: 23/07/2013 diametro nominale (mm):88.9 data di arrivo: 23/07/2013 lunghezza effettiva (cm):42

Descrizione del campione: terreno coesivo giallo-verde con occasionali clasti friabili millimetrici, bruni

DATI DI PROVA - PESO DI VOLUME

data di esecuzione: 29/07/2013

volume(cm ³)	peso umido (g)	test eseguito	localizzazione nel campione
84.70	164.52	compressione non confinata - provino 1	centro-inferiore
84.70	165.20	compressione non confinata - provino 2	centrale

Peso di volume γ 19.09 kN/m^3

(medio, in condizioni di umidità naturale)

DATI DI PROVA - UMIDITA' NATURALE

data di esecuzione: 29/07/2013

peso umido (g)	peso secco (g)	test eseguito	localizzazione nel campione
28.76	21.79	compressione non confinata - provino 1	centro-inferiore
16.34	12.42	compressione non confinata - provino 2	centrale

Umidità allo stato naturale W 31.77 %

56028 San Miniato Basso (PI) via Ilaria Alpi, 18/20

tel 0571/43213 fax 0571/403063 www.ichnogeo.it- info@ichnogeo.it

Ministero delle Infrastrutture e dei Trasporti Consiglio Superiore dei Lavori Pubblici

ISO 9001
BUREAU VERITAS
Certification

Laboratorio autorizzato - settori A e C decreto n° 54814 del 28/04/2006 rinnovo n° 3663 del 22/03/2012

PROVA DI COMPRESSIONE ASSIALE NON CONFINATA

norma di riferimento: UNI CEN ISO/TS 17892-7

deviazioni dalla norma: nessuna

verbale di accettazione n° 114/13 del 23/07/2013 certificato di prova n° 0776/13 del 30/07/2013

Committente: **Dott. Geol. Graziano Graziani**Località: **Bientina (PI) - via Gofi di Pecora**

identificativo campione: S1 C1 tipologia: indisturbato

profondità nominale (m): 2,5-3,0 contenitore: fustella metallica a pareti sottili

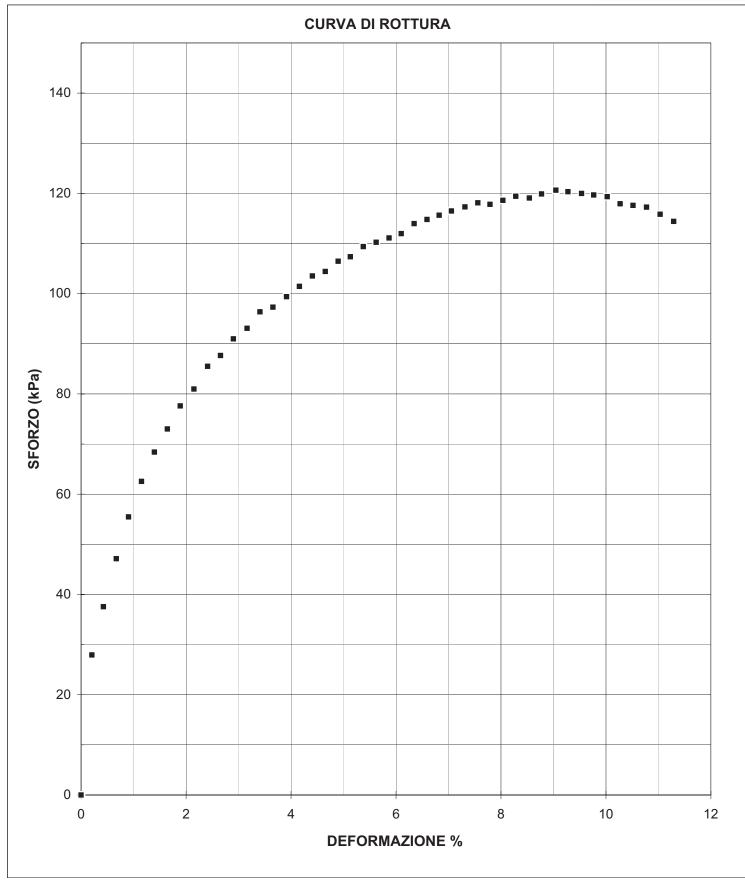
data di prelievo: 23/07/2013 diametro nominale (mm): 88.9 data di arrivo: 23/07/2013 lunghezza effettiva (cm): 42

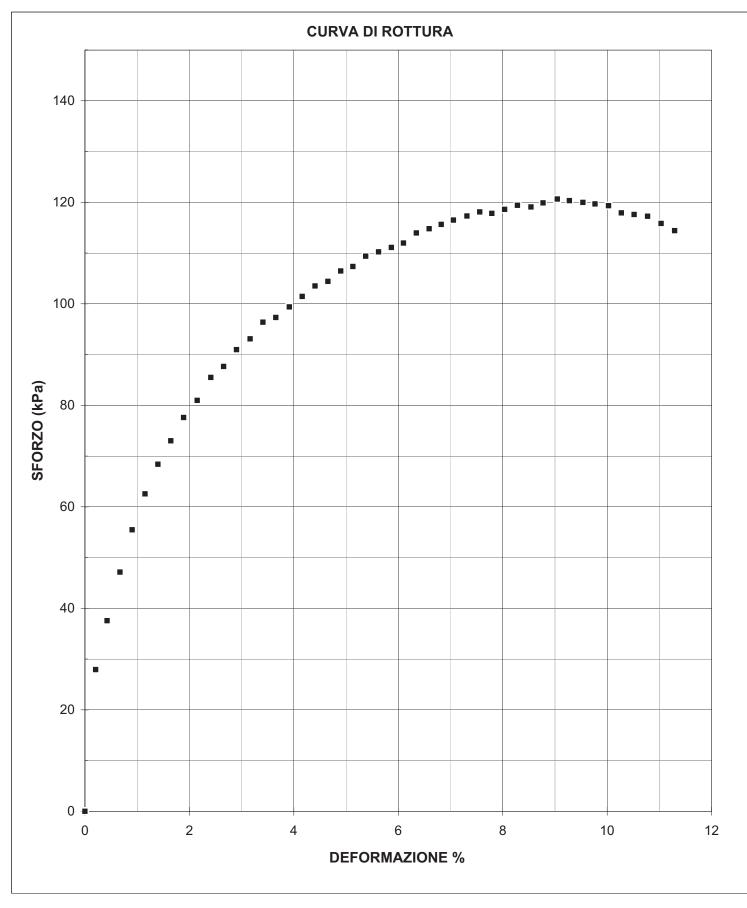
Descrizione del campione: terreno coesivo giallo-verde con occasionali clasti friabili millimetrici, bruni

CARATTERISTICHE DEL PROVINO

provino n° 1

sezione	11.16	cm ²			
altezza iniziale	7.59	cm			
massa iniziale	164.52	g	altezza finale	6.73	cm
umidità iniziale	31.99	%	umidità finale	32.02	%


DATI DI PROVA


data di esecuzione: 29/07/2013 velocità di deformazione: 0.0125 mm/s

deformazione assiale (mm)	area corretta (cm²)	forza (N)	Pressione (kPa)	deformazione assiale (mm)	area corretta (cm²)	forza (N)	Pressione (kPa)
0.00	11.16	0.00	0.00	4.45	11.86	131.72	111.10
0.16	11.18	31.23	27.93	4.63	11.89	133.08	111.97
0.32	11.21	42.10	37.56	4.82	11.92	135.80	113.96
0.51	11.24	52.96	47.14	5.00	11.95	137.15	114.79
0.69	11.26	62.47	55.47	5.18	11.98	138.51	115.64
0.87	11.29	70.61	62.55	5.36	12.01	139.87	116.49
1.06	11.32	77.40	68.39	5.55	12.04	141.23	117.29
1.25	11.35	82.84	73.00	5.74	12.07	142.59	118.11
1.43	11.38	88.27	77.60	5.91	12.10	142.59	117.81
1.63	11.41	92.34	80.96	6.10	12.14	143.94	118.61
1.83	11.44	97.77	85.50	6.29	12.17	145.30	119.41
2.02	11.46	100.49	87.65	6.48	12.20	145.30	119.07
2.20	11.49	104.56	90.97	6.66	12.23	146.66	119.88
2.40	11.52	107.28	93.09	6.87	12.27	148.02	120.63
2.59	11.55	111.35	96.37	7.04	12.30	148.02	120.33
2.77	11.58	112.71	97.30	7.24	12.34	148.02	119.98
2.97	11.61	115.43	99.38	7.41	12.37	148.02	119.68
3.16	11.64	118.14	101.45	7.61	12.40	148.02	119.33
3.34	11.67	120.86	103.52	7.80	12.44	146.66	117.92
3.53	11.70	122.22	104.42	7.98	12.47	146.66	117.59
3.72	11.73	124.93	106.46	8.18	12.51	146.66	117.25
3.89	11.76	126.29	107.35	8.37	12.54	145.30	115.83
4.08	11.79	129.01	109.38	8.57	12.58	143.94	114.41
4.27	11.82	130.36	110.24				

kPa massimo valore misurato: 120.6 $q_c =$ stima della coesione non drenata: c_u = 60.3 kPa modulo di Young iniziale, non drenato: $E_0 =$ 13.6 MPa modulo di Young al 50% del carico di rottura, non drenato: MPa $E_{50} =$ 2.9

56028 San Miniato Basso (PI) via Ilaria Alpi, 18/20 tel 0571/43213 fax 0571/403063

www.ichnogeo.it-info@ichnogeo.it

Ministero delle Infrastrutture e dei Trasporti Consiglio Superiore dei Lavori Pubblici

BUREAU VERITAS
Certification

Laboratorio autorizzato - settori A e C decreto n° 54814 del 28/04/2006 rinnovo n° 3663 del 22/03/2012

PROVA DI COMPRESSIONE ASSIALE NON CONFINATA

norma di riferimento: UNI CEN ISO/TS 17892-7

deviazioni dalla norma: nessuna

verbale di accettazione n° 114/13 del 23/07/2013 certificato di prova n° 0777/13 del 30/07/2013

Committente: **Dott. Geol. Graziano Graziani**Località: **Bientina (PI) - via Gofi di Pecora**

identificativo campione: S1 C1 tipologia: indisturbato

profondità nominale (m): 2,5-3,0 contenitore: fustella metallica a pareti sottili

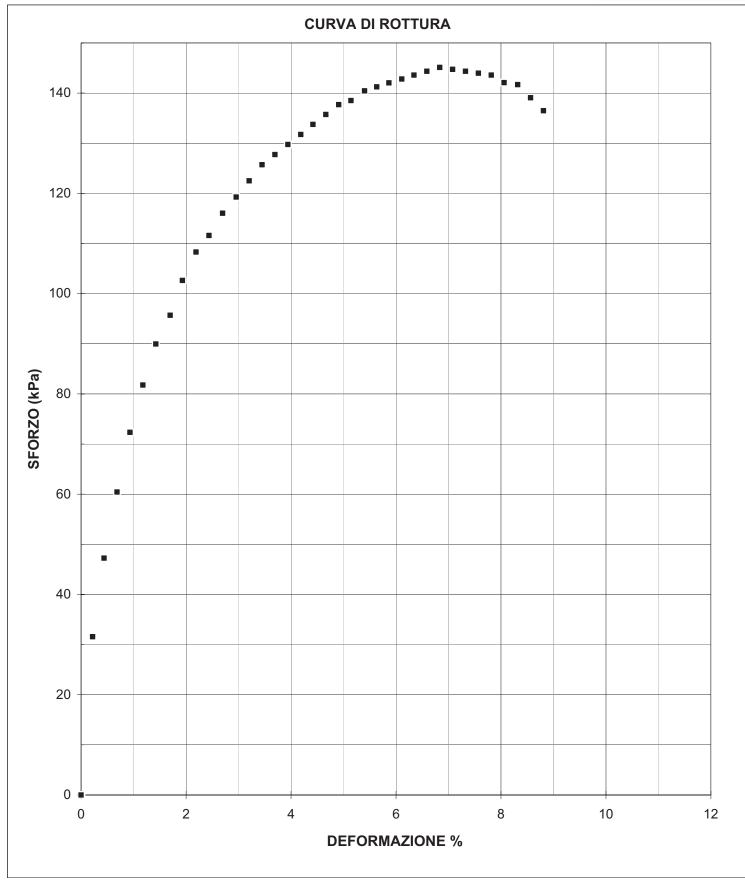
data di prelievo: 23/07/2013 diametro nominale (mm): 88.9 data di arrivo: 23/07/2013 lunghezza effettiva (cm): 42

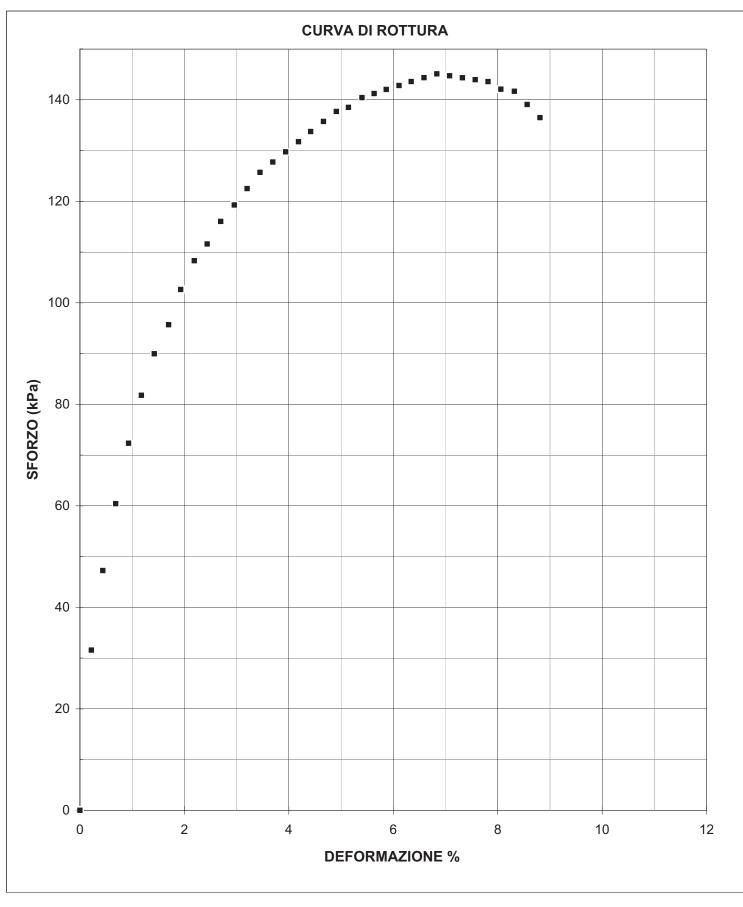
Descrizione del campione: terreno coesivo giallo-verde con occasionali clasti friabili millimetrici, bruni

CARATTERISTICHE DEL PROVINO

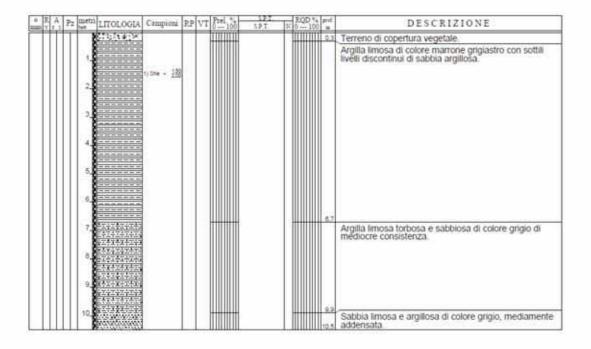
provino n° 2

sezione	11.16	cm ²			
altezza iniziale	7.59	cm			
massa iniziale	165.20	g	altezza finale	6.92	cm
umidità iniziale	31.56	%	umidità finale	31.58	%


DATI DI PROVA


data di esecuzione: 29/07/2013 velocità di deformazione: 0.0125 mm/s

deformazione assiale (mm)	area corretta (cm²)	forza (N)	Pressione (kPa)	deformazione assiale (mm)	area corretta (cm²)	forza (N)	Pressione (kPa)
0.00	11.16	0.00	0.00	3.54	11.71	158.88	135.73
0.17	11.18	35.31	31.57	3.73	11.74	161.60	137.69
0.33	11.21	52.96	47.25	3.90	11.76	162.95	138.50
0.52	11.24	67.90	60.42	4.10	11.80	165.67	140.43
0.71	11.26	81.48	72.33	4.28	11.83	167.03	141.24
0.89	11.29	92.34	81.77	4.45	11.86	168.39	142.04
1.08	11.32	101.84	89.96	4.64	11.89	169.74	142.80
1.29	11.35	108.63	95.69	4.81	11.92	171.10	143.59
1.47	11.38	116.78	102.62	5.00	11.95	172.46	144.35
1.66	11.41	123.57	108.30	5.19	11.98	173.82	145.11
1.85	11.44	127.65	111.59	5.37	12.01	173.82	144.73
2.05	11.47	133.08	116.03	5.56	12.04	173.82	144.34
2.24	11.50	137.15	119.26	5.75	12.07	173.82	143.96
2.43	11.53	141.23	122.50	5.93	12.11	173.82	143.58
2.62	11.56	145.30	125.71	6.12	12.14	172.46	142.08
2.80	11.59	148.02	127.73	6.31	12.17	172.46	141.68
2.99	11.62	150.73	129.74	6.50	12.21	169.74	139.07
3.18	11.65	153.45	131.74	6.69	12.24	167.03	136.48
3.35	11.68	156.16	133.75				



kPa massimo valore misurato: 145.1 $q_c =$ stima della coesione non drenata: c_u = 72.6 kPa modulo di Young iniziale, non drenato: $E_0 =$ 14.4 MPa modulo di Young al 50% del carico di rottura, non drenato: MPa $E_{50} =$ 4.3

	S14		į į	22	1		1	S.P.T.	Vane Test
0	RAPPRESENTAZIONE GRAFICA	DESCRIZIONE LITOLOGICA	CANOTAGGIO % recupero	Centro	Campionalpre	Tipo di prafeno	Pookut Penetron Ster Kgkm2 d	Planers com	Marina 1 - Karina 2
	[](([]°•(•(]°°•(([))°•	**************************************	10 30 50 70 90	-	-		11111		11111
-	••□0□°•0•□°°°°°°	Terreno di riporto fecente parte delle massicciata stradale.	111111111				1		
	••□0□•••□•••0□0 □0□••••□••		HILLIAN	1 5	18 1		1111111		1 111111
		Terrano inconstatuata: carota vuota.	-1111111111		8		HIIII	0	l lilli
			111111111111111111111111111111111111111		1		1111111	2	1 111111
- 1	The second secon	LIMOARGILLOSO landente all'aryffia limosa contenanne lents arancions di sabble fini.	111111111		1		HHH		1 111111
	********	Colore marrone.	111111111	1			Hilli	19 7	1 111111
	Y-Y-Y-Y-Y-	TORBA			1		1111111	9	1 (1)11(1)
	**************************************						11111111		i maa
	Don't have been been a	ARGILLA grigle contenente resti vegetali. La compettezza aumenta con la profondità.	111111111		15 3		1111111	8 7	i libbi
	Deliver of the last of the las	Nella parts inferiore cono presenti numerose intercalazioni costituite da sabble fini	1111111111				1111111	. /	111111
		er ancionis.	11111111		10		111111	0 1	
-	-	ARGILLA LIMOSA grigia con venature erancioni. La frazione limosa, assieme alla con		l i			1111111		
į	Leving to a continuous survey	sistenza, decresce con la profondità.	34331414	2.1			1111111		1 111111
1	Acces Andreas Acces (Acces (Ac		-11/11/11/11	1 8	10 1		1111111		Littli
		LIMO SARBIOSO marrone con una frazione argillosa decrescente verso la base.					1113111	. 1	
	Appellances		- 111111111						
1	CONTRACTOR CONTRACTOR	SABRE LIMOSE grossofane di colore grigio.			2		111111		
200	1040 VW V 0440 V 047						111111		1111111
	Application							8	Lillilli
The second		LIMI SASSICOSI grigi con una trazione argificsa più abbondante nella parte basale.					1111111		1 111111
		Sono presenti locali livelletti sabbiosi. ARGILLE LIMOSE con sporediche intercalazioni sebbiose gripia.		1					
d	5-2-5-2-3-5	Numer's Plannes cold Monancial assurantion Seconds Suite	-10000		1 1		HILH		114111
	-0-9-0-6-0-9-		11.1111111				1111111		111111
Н	a-b-s-b-s-b-s	ARGILLE grigle scarsamente consistenti.		P (1 8		1111111		1 111111
d	1-9-1-4-1-0-1		111111111		1 19				
	-8-0-8-0-6-0-		11111111		1 8		111111		111111
	TO SECTION STREET, SECTION ASSESSMENT	(IMI SABBIOS). Le sabble sono di media granufometria e la loro percentuale aumenta		. 24	1		1.11111	(B	1111111
H	menne visen vien	verso la parte basale divanendo prevalente nell'uttino tratto (>28 cm).	-111111111				IIIIIII		
	p-u-p-u-p		11 11 11 11 11	V .	1 3		1111111		111111
		ARGILLA scarsamente consistente di colore grigio.			1		61111	l ii	111111
	B-0-2-0-2-0-2		11111111	1	1		Ullill		I IIIIii
			11111111				fill!!!	1 7	111111
	-8-5-8-5-8-5-		111111111		1 8		1311111	1	111111
	A CONTRACTOR OF THE PARTY OF TH	ARGILLA rosa poco consistente.	111111111		1 3				HIIII
I	2-0-2-0-0-0-0				1 3		1311111		
	-9-0-9-8-0-8-		11111111				THILL		1111111
	#+8-# - 0-8-0	ARCITLA rese peco consistente. La colorazione tende al grigito verso la parte fiassa.	Hillini				HILL	10	1 111111
		FORBA merrone scure of circa 60 cm of spessors.	-111111111					1	Hilli
	2+0-0+8-0+b-2				1 0		1111111	1	
		ARGILLE grigie de poco e mediamente consistenti.	HILLING		1 3	Į.	1111111	1 1	111111
ľ					1 1		HHH		111111
1	and the same of th					Ü			
		ARGILLE soure contenent gusci di conchiglie.	41111111			0	1111111	10	
	-Y YYYY-YY	TORRA marroce scure con Eveletti argilkoli e limo-sabblosi. Sono presuli resil di	-11111111	176		0	111111	1	11111
	=Y.:.*YYYY=YY:	TORIBA marrone scura con livelletti argittosi e limo-sabblosi. Bono presidi resti di carboni. La parte basale (sa 18 cm) è costituita da limo-sabbioso.		10.5	1 0	1	31111	- 37	
	Administration of the second		111111111				111111		1 1111111
	Decaetor Aeca: Decaetor Aeca:	LIMI SABBIOSI grigio-merroni.							
			-				111111		1 111111
	°••°•°•°•°	GHIAIE grossolane e ciotică variamente errotondati di differenta filologia.						ALT.	
1		La matrice risulta essere costituita da salibire-limose di media dimensios; e di colore							
	::::::::::::::::::::::::::::::::							8	
- 1		SARRIE FINI LIMOSE di colore giafio-ocra con piccola concrezioni nerastre.							
		All'Interno della frazione fine, molto compatta, cono presenti clasti fino a 10 cm di							1 111111
	STANDARD CALCAN								
	Detraction catch					3	111111	1	1 111111
	**********	LIMI ARGILLOSI motio compatii a fratti contenenti intercalazioni sabblose.		1					
		Le coforazione della frazione fine è giallestra mentre quelle delle sabble è grigis.							
		La consistenza cresce verso II basso. Sono presenti sottili tivelletti torbosi.						1	
-	MEA AMEA AMEA			20		1		1	
		GHIAIC minute di varia litologia frammisia a ciottoli fino a 3 cm di diametro(diaspro)							111111
		La matrice è arancio-nazastra, costituita da sabble limpas.						1	
-	1-1-1-1-1-1-	Sono persenti sotti lesti di lorba pero-marrone. Y-Y-Y- TORBA Note	1111111111	SURA FALDA A	CQUIFERA		mun.	-	L'IIIII
		MINISTER ARGULA	and the second second	milio firentr	Wiles, today and	жен	1		
ne	RAFICI	SARSES LIMI					SONDAGO	THE CHE	S 2

\$50

She = Shelley Don = Dennion Onl = Coumberg Au = Livella acqua reversata Au = Livella acqua stabilizzata Pa. = Piencensero Rg = Piencensero Eg	8548	Riporto		Limo	NOTE:	
	0 . 0	Terreno vegetale		Sabbia		
		Argilla		Ghiaia, ciottoli		

MAPPO GEOGNOSTICA s.r.l. Loc. Biagioni, 60 - 55011 Spianate (LU) Tel. 0583 20799 - 335 7215712 E-mail: mappogeognostica@virgilio.it C.F. E.P. IVA 02019570460

Autorizzazione Ministero delle Infrastrutture e Trasporti ad effettuare e certificare prove geotecniche sui terreni n 5021 del 24 maggio 2011

Int. Certificati:

Studio di Geologia di Benedetti e Carmignani

Cantiere: Via Fibonacci Località: Bientina (PI) Data inizio: 05/07/2016 Data fine: 05/07/2016
Sondaggio n.: 1 Metodo perfor.: Sondaggio a carotaggio continuo Diamm. (mm): 101/126

DOCUMENTAZIONE FOTOGRAFICA CAROTE DI SONDAGGIO

Cassetta n. 1: da 0,0 m a - 5,0 m

Cassetta n. 2: da - 5,0 m a - 10,0 m

MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI

Certificazione settore "A" - Prove di laboratorio su terre
Decreto 2436 del 14/03/2013 - ART. 59 DPR 380/2001 - Circolare 7618/STC 2010

LABOTER s.n.c. di Paolo Tognelli e C. Lab. Geotecnico - C.S.LL.PP. Decr.2436/13

Committente: Studio Associato Benedetti Carmignani

Cantiere: Via Gofi di Pecora - Bientina (PI)

Verbale Accettazione n°: 221 del 06/07/2016

Data Certificazione: 20/07/2016

Campioni n°: 1

Certificati da nº a nº: 02087 a 02090

Il direttore del laboratorio Dott. Geologo Paolo Tognelli

MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI

Certificazione Settore A - Prove di laboratorio su terre Decreto 2436 - del 14/03/2013 - Art. 59 DPR 380/2001 - Circolare 7618/STC 2010

COMMITTENTE: Studio Associato Benedetti Carmignani

RIFERIMENTO: Via Gofi di Pecora - Bientina (PI)

SONDAGGIO: 1 CAMPIONE: 1 PROFONDITA': m 1.5-2.0

CARATTERISTICHE FISICHE

Umidità naturale	32,0	%
Peso di volume	18,0	kN/m³
Peso di volume secco	13,6	kN/m³
Peso di volume saturo	18,4	kN/m³
Peso specifico	26,5	kN/m³
Indice dei vuoti	0,944	
Porosità	48,6	%
Grado di saturazione	91,5	%
Limite di liquidità		%
Limite di plasticità		%
Indice di plasticità		%
Indice di consistenza		
Passante al set. n° 40		
Limite di ritiro		%
CNR-UNI 10006/00		

ANALISI GRANULOMETRICA

Ghiaia		%
Sabbia	0,7	%
Limo	42,6	%
Argilla	56,7	%
D 10	0,000468	mm
D 50	0,003454	mm
D 60	0,006114	mm
D 90	0,023912	mm
Passante set. 10	100,0	%
Passante set. 42	100,0	%
Passante set. 200	99,3	%
·	•	

PERMEABILITA'

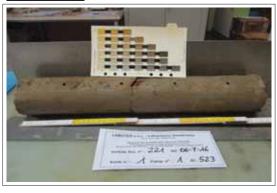
Coefficiente k cm/sec

COMPRESSIONE

σ	kPa
c _u	kPa
σ_{Rim}	kPa
c _{u Rim}	kPa

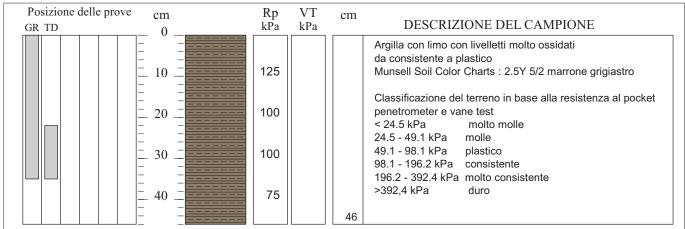
TAGLIO DIRETTO

Prova co	nsolidata-ler	nta
С	20,4	kPa
ф	22,3	0
c _{Res}		kPa °


COMPRESSIONE TRIASSIALE

C.D.	Cd	kPa	фd	0
CII	C'cu	kPa	φ' _{cu}	0
C.U.	Ccu	kPa kPa	фси	0
U.U.	Cu	kPa	фu	0

PROVA EDOMETRICA


♂ kPa	E kPa	Cv cm²/sec	k cm/sec

FOTOGRAFIA

OSSERVAZIONI

Tipo di campione: Cilindrico Qualità del campione: Q 5

MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI

Certificazione Settore A - Prove di laboratorio su terre Decreto 2436 - del 14/03/2013 - Art. 59 DPR 380/2001 - Circolare 7618/STC 2010

CERTIFICATO DI PROVA N°: 02087	Pagina 1/1	DATA DI EMISSIONE:	20/07/16	Inizio analisi:	13/07/16
VERBALE DI ACCETTAZIONE N°: 221 de	I 06/07/16	Apertura campione:	13/07/16	Fine analisi:	14/07/16
COMMITTENTE: Studio Associato Benede	etti Carmignani				
RIFERIMENTO: Via Gofi di Pecora - Bient					
SONDAGGIO: 1	CAMPIONE:	1	PRO	FONDITA': m	1.5-2.0
CONTE	NUTO D'ACQU	A ALLO STATO NATURAL	<u>E</u>		
Мо	dalità di prova:	Norma ASTM D 2216			
Wn = contenuto d'acqua allo stato n	aturale (medi	a delle tre misure) =	32,0 %		
	Omoger	100			
Churchtonia dal mantaniala.	•				
Struttura del materiale:	☐ Stratifica	alo			
	☐ Caotico				
Temperatura di essiccazione: 110	O °C				

MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI

Certificazione Settore A - Prove di laboratorio su terre Decreto 2436 - del 14/03/2013 - Art. 59 DPR 380/2001 - Circolare 7618/STC 2010

CERTIFICATO DI PROVA N°: 02088	Pagina 1/1	DATA DI EMISSIONE:	20/07/16	Inizio analisi:	13/07/16				
VERBALE DI ACCETTAZIONE N°: 221 del 06/07/16 Apertura campione: 13/07/16 Fine analisi: 13/07									
COMMITTENTE: Studio Associato Benedetti Carmignani									
RIFERIMENTO: Via Gofi di Pecora - Bie	ntina (PI)								
SONDAGGIO: 1	CAMPIONE:	1	PRO	FONDITA': m	1.5-2.0				

PESO DI VOLUME ALLO STATO NATURALE

Modalità di prova: Norma BS 1377 T 15/E

Determinazione eseguita mediante fustella tarata

Peso di volume allo stato naturale (media delle due misure) = 18,0 kN/m³

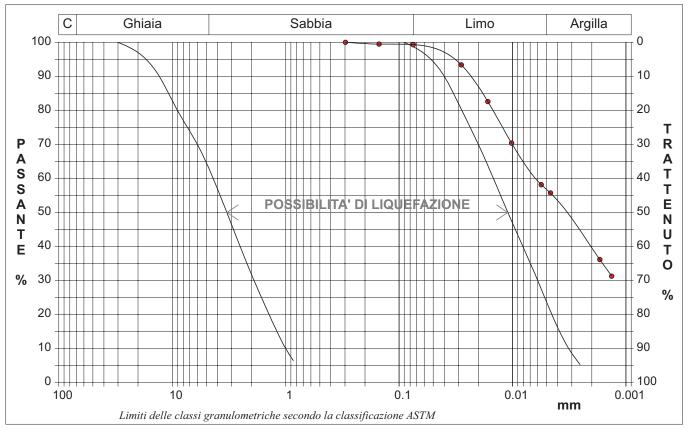
SGEO - Laboratorio 4.5 - 2016

MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI

Certificazione Settore A - Prove di laboratorio su terre Decreto 2436 - del 14/03/2013 - Art. 59 DPR 380/2001 - Circolare 7618/STC 2010

CERTIFICATO DI PROVA N°:02089Pagina 1/1DATA DI EMISSIONE:20/07/16Inizio analisi:17/07/16VERBALE DI ACCETTAZIONE N°:221 del 06/07/16Apertura campione:13/07/16Fine analisi:20/07/16

COMMITTENTE: Studio Associato Benedetti Carmignani


RIFERIMENTO: Via Gofi di Pecora - Bientina (PI)

SONDAGGIO: 1 CAMPIONE: 1 PROFONDITA': m 1.5-2.0

ANALISI GRANULOMETRICA

Modalità di prova: Norma ASTM D 422-63

Ghiaia	0,0 %	Passante set	accio 10 (2 mm)	100,0 %	D ₁₀	0,00047 mm
Sabbia	0,7 %		accio 40 (0.42 mm)	100,0 %	D ₃₀	mm
Limo	42,6 %		,	,	D ₅₀	0,00345 mm
Argilla	56,7 %	Passante set	accio 200 (0.075 mm)	99,3 %	D ₆₀	0,00611 mm
Coefficiente o	di uniformità	13,07	Coefficiente di curvatura		D ₉₀	0,02391 mm

Diametro mm	Passante %	Diametro mm	Passante %	Diametro mm	Passante %	Diametro mm	Passante %	Diametro mm	Passante %
0,2970	100,00	0,0102	70,38						
0,1500	99,48	0,0056	58,15						
0,0750	99,32	0,0046	55,71						
0,0283	93,36	0,0017	36,15						
0,0165	82,60	0,0013	31,26						

MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI

Certificazione Settore A - Prove di laboratorio su terre Decreto 2436 - del 14/03/2013 - Art. 59 DPR 380/2001 - Circolare 7618/STC 2010

CERTIFICATO DI PROVA N°:02090Pagina 1/4DATA DI EMISSIONE:20/07/16Inizio analisi:14/07/16VERBALE DI ACCETTAZIONE N°:221 del 06/07/16Apertura campione:13/07/16Fine analisi:18/07/16

COMMITTENTE: Studio Associato Benedetti Carmignani

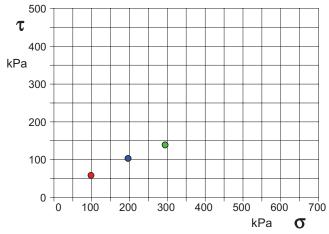
RIFERIMENTO: Via Gofi di Pecora - Bientina (PI)

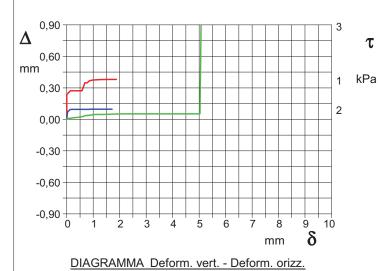
SONDAGGIO: 1 CAMPIONE: 1 PROFONDITA': m 1.5-2.0

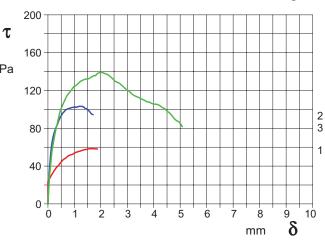
PROVA DI TAGLIO DIRETTO

Modalità di prova: Norma ASTM D 3080-72

Provino n°:	1	2	3	
Condizione del provino:	Indisturbato	Indisturbato	Indisturbato	
Pressione verticale (kPa):	98	196	294	
Tensione a rottura (kPa):	58	103	139	
Deformazione orizzontale a rottura (mm):	1,69	1,20	1,96	
Deformazione verticale a rottura (mm):	0,38	0,10	0,05	
Umidità iniziale e umidità finale (%):	36,6	35,8	37,5	
Peso di volume (kN/m³):	18,0	17,8	18,0	


DIAGRAMMA


Tensione - Pressione verticale


Tipo di prova: Consolidata - lenta

Velocità di deformazione: 0,007 mm / min

Tempo di consolidazione (ore): 24

MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI

Certificazione Settore A - Prove di laboratorio su terre Decreto 2436 - del 14/03/2013 - Art. 59 DPR 380/2001 - Circolare 7618/STC 2010

 CERTIFICATO DI PROVA N°:
 02090
 Pagina 2/4
 DATA DI EMISSIONE:
 20/07/16
 Inizio analisi:
 14/07/16

 VERBALE DI ACCETTAZIONE N°:
 221 del 06/07/16
 Apertura campione:
 13/07/16
 Fine analisi:
 18/07/16

COMMITTENTE: Studio Associato Benedetti Carmignani

RIFERIMENTO: Via Gofi di Pecora - Bientina (PI)

SONDAGGIO: 1 CAMPIONE: 1 PROFONDITA': m 1.5-2.0

PROVA DI TAGLIO DIRETTO

Modalità di prova: Norma ASTM D 3080-72

	Provino 1			Provino 2			Provino 3	
Spostam. mm	Tensione kPa	Deform. vert. mm	Spostam. mm	Tensione kPa	Deform. vert. mm	Spostam. mm	Tensione kPa	Deform. vert. mm
0,003	23,6	0,24	0,028	17,1	0,07	0,054	27,8	0,01
0,134	30,4	0,27	0,084	43,7	0,08	0,274	75,3	0,02
0,232	34,9	0,27	0,140	62,6	0,09	0,454	97,3	0,02
0,318	38,2	0,27	0,196	70,6	0,10	0,628	108,9	0,03
0,410	41,0	0,27	0,252	76,6	0,10	0,788	117,0	0,04
0,497	44,1	0,27	0,308	80,6	0,10	0,978	124,0	0,04
0,574	46,7	0,27	0,364	84,2	0,10	1,148	127,4	0,05
0,680	48,6	0,35	0,420	88,6	0,10	1,323	130,9	0,05
0,775	50,9	0,35	0,476	91,9	0,10	1,510	132,1	0,05
0,855	51,7	0,37	0,532	94,8	0,10	1,661	134,4	0,05
0,935	52,6	0,37	0,588	96,8	0,10	1,797	135,5	0,05
1,031	54,2	0,38	0,644	98,6	0,10	1,957	139,0	0,05
1,117	55,1	0,38	0,700	99,7	0,10	2,156	137,9	0,05
1,205	55,6	0,38	0,756	100,8	0,10	2,366	134,4	0,05
1,289	56,5	0,38	0,812	101,0	0,10	2,541	129,7	0,05
1,381	57,3	0,38	0,868	101,5	0,10	2,710	127,4	0,05
1,460	57,6	0,38	0,924	102,1	0,10	2,895	122,8	0,05
1,546	58,1	0,38	0,980	102,4	0,10	3,061	119,3	0,05
1,620	58,4	0,38	1,036	102,6	0,10	3,253	114,7	0,05
1,693	58,5	0,38	1,092	102,4	0,10	3,436	112,4	0,05
1,766	58,2	0,38	1,148	102,8	0,10	3,611	110,1	0,05
1,842	58,2	0,38	1,204	103,3	0,10	3,770	107,7	0,05
1,871	58,0	0,38	1,260	103,0	0,10	3,905	106,6	0,05
			1,316	103,0	0,10	4,098	105,4	0,05
			1,372	102,1	0,10	4,318	101,9	0,05
			1,428	100,6	0,10	4,498	98,5	0,05
			1,484	99,5	0,10	4,675	93,8	0,05
			1,540	98,6	0,10	4,859	88,0	0,05
			1,596	96,8	0,10	5,031	83,8	0,05
			1,652	95,0	0,10			
			1,708	94,4	0,10			

CERTIFICATO DI PROVA N°:

VERBALE DI ACCETTAZIONE N°:

DNV Business Assurance
Certificato No. 111177-2012-AQ-ITA-ACCREDIA
UNI EN ISO 9001:2008 (ISO 9001:2008)
Prove geotecniche di laboratorio su terre

221 del 06/07/16

Pagina 3/4

MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI

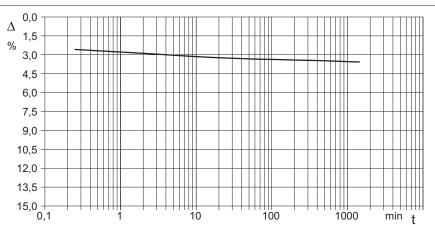
Certificazione Settore A - Prove di laboratorio su terre Decreto 2436 - del 14/03/2013 - Art. 59 DPR 380/2001 - Circolare 7618/STC 2010

DATA DI EMISSIONE: 20/07/16 Inizio analisi: 14/07/16

Apertura campione: 13/07/16 Fine analisi: 18/07/16

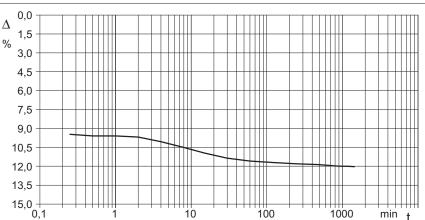
COMMITTENTE: Studio Associato Benedetti Carmignani

02090

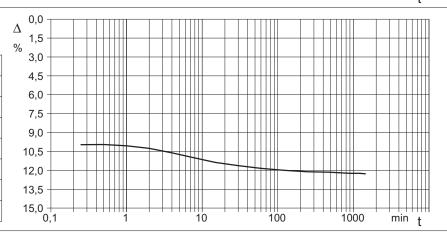

RIFERIMENTO: Via Gofi di Pecora - Bientina (PI)

SONDAGGIO: 1 CAMPIONE: 1 PROFONDITA': m 1.5-2.0

PROVA DI TAGLIO DIRETTO - FASE DI CONSOLIDAZIONE


Modalità di prova: Norma ASTM D 3080-72

<u>Diagramma</u> TEMPO - CEDIMENTO PROVINO 1 Pressione (kPa) 98 Altezza iniziale (cm) 2,00 Altezza finale (cm) 1,93 Sezione (cm²) 36,00 T₅₀ (min) 0,0 Df (mm) 7 Vs (mm/min) 0,000


<u>Diagramma</u> TEMPO - CEDIMENTO

PROVINO 2	
Pressione (kPa)	196
Altezza iniziale (cm)	1,97
Altezza finale (cm)	1,73
Sezione (cm²)	36,24
T ₅₀ (min)	0,0
Df (mm)	7
Vs (mm/min)	0,000

<u>Diagramma</u> <u>TEMPO - CEDIMENTO</u>

PROVINO 3	
Pressione (kPa)	294
Altezza iniziale (cm)	1,98
Altezza finale (cm)	1,74
Sezione (cm²)	36,00
T_{50} (min)	0,0
Df (mm)	7
Vs (mm/min)	0,000

Vs = Velocità stimata di prova Df = Deformazione a rottura stimata

 $tf = 50 \times T_{50}$

Vs = Df / tf

MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI

Certificazione Settore A - Prove di laboratorio su terre Decreto 2436 - del 14/03/2013 - Art. 59 DPR 380/2001 - Circolare 7618/STC 2010

CERTIFICATO DI PROVA N°:02090Pagina 4/4DATA DI EMISSIONE:20/07/16Inizio analisi:14/07/16VERBALE DI ACCETTAZIONE N°:221 del 06/07/16Apertura campione:13/07/16Fine analisi:18/07/16

COMMITTENTE: Studio Associato Benedetti Carmignani

RIFERIMENTO: Via Gofi di Pecora - Bientina (PI)

SONDAGGIO: 1 CAMPIONE: 1 PROFONDITA': m 1.5-2.0

PROVA DI TAGLIO DIRETTO - FASE DI CONSOLIDAZIONE

Modalità di prova: Norma ASTM D 3080-72

	Provino 1			Provino 2			Provino 3	
Tempo	Cedim.	Cedim.	Tempo	Cedim.	Cedim.	Tempo	Cedim.	Cedim.
minuti	mm/100	%	minuti	mm/100	%	minuti	mm/100	%
0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
0,25	51,60	2,58	0,25	186,50	9,47	0,25	197,30	9,96
0,50	53,60	2,68	0,50	188,90	9,59	0,50	197,00	9,95
1,00	55,60	2,78	1,00	188,90	9,59	1,00	199,03	10,05
2,00	57,70	2,89	2,00	190,80	9,69	2,00	202,95	10,25
4,00	59,90	3,00	4,00	198,00	10,05	4,00	210,15	10,61
8,00	62,10	3,11	8,00	206,90	10,50	8,00	218,04	11,01
15,00	64,10	3,21	15,00	215,60	10,94	15,00	225,05	11,37
30,00	65,60	3,28	30,00	223,80	11,36	30,00	230,21	11,63
60,00	66,70	3,34	60,00	228,30	11,59	60,00	234,38	11,84
120,00	67,60	3,38	120,00	230,40	11,70	120,00	237,49	11,99
240,00	68,50	3,43	240,00	232,50	11,80	240,00	239,93	12,12
480,00	69,30	3,47	480,00	233,90	11,87	480,00	240,65	12,15
900,00	70,70	3,54	900,00	236,40	12,00	900,00	242,14	12,23
1200,00	71,10	3,56	1200,00	236,50	12,01	1200,00	242,24	12,23
1440,00	71,20	3,56	1440,00	237,00	12,03	1440,00	243,08	12,28

COMMITTENTE: Studio Associato Benedetti Carmignani

RIFERIMENTO: Via Gofi di Pecora - Bientina (PI)

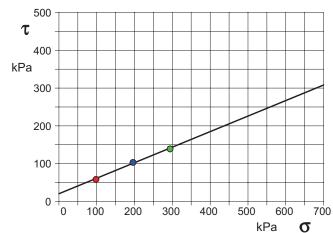
SONDAGGIO: 1 CAMPIONE: 1 PROFONDITA': m 1.5-2.0

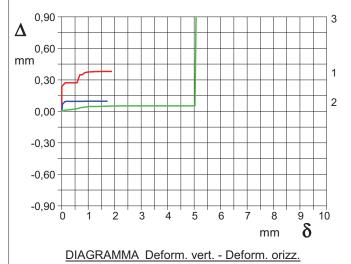
PROVA DI TAGLIO DIRETTO

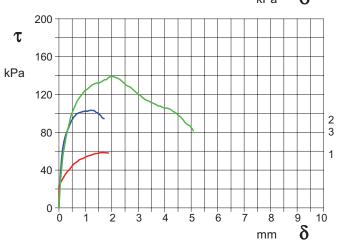
Modalità di prova: Norma ASTM D 3080-72

Provino n°:	1	2	3	
Condizione del provino:	Indisturbato	Indisturbato	Indisturbato	
Pressione verticale (kPa):	98	196	294	
Tensione a rottura (kPa):	58	103	139	
Deformazione orizzontale a rottura (mm):	1,69	1,20	1,96	
Deformazione verticale a rottura (mm):	0,38	0,10	0,05	
Umidità iniziale e umidità finale (%):	36,6	35,8	37,5	
Peso di volume (kN/m³):	18,0	17,8	18,0	

DIAGRAMMA


Tensione - Pressione verticale


Coesione: 20,4 kPa Angolo di attrito interno: 22,3 °


Tipo di prova: Consolidata - lenta

Velocità di deformazione: 0,007 mm / min

Tempo di consolidazione (ore): 24

PROVA PENETROMETRICA DINAMICA TABELLE VALORI DI RESISTENZA

n° 1

Riferimento: bie1-13

indagine:
 cantiere:
 località:
 Realizzazione soppalco
 data:
 quota inizio:
 piano pavimento
 prof. falda:
 Falda non rilevata

- note : - pagina : 1

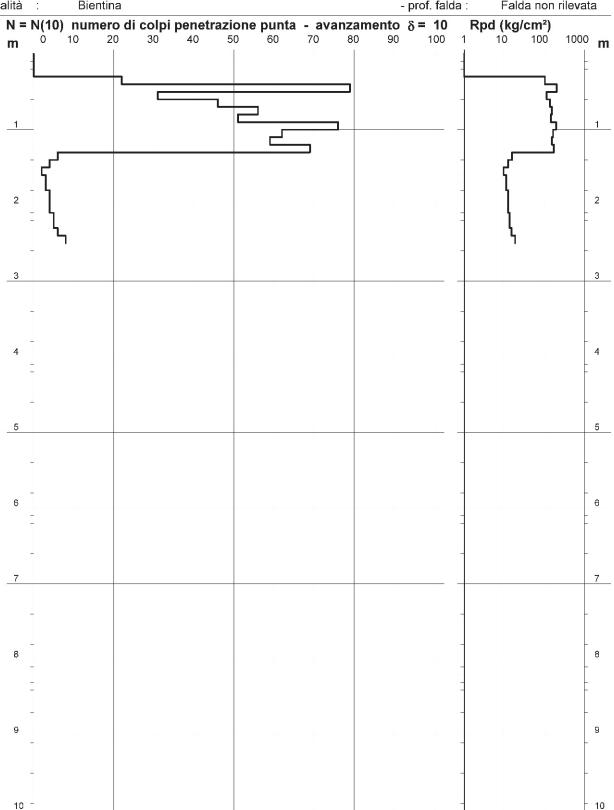
Prof	f.(m)	N(colpi p)	Rpd(kg/cm²)	N(colpi r)	asta	Prof.(m)	N(colpi p)	Rpd(kg/cm²)	N(colpi r)	asta
-,	0,10				1	1,30 - 1,40	6	29,5		3
0,10 -	0,20				2	1,40 - 1,50	4	19,7		3
0,20 -	0,30				2	1,50 - 1,60	2	9,8		3
0,30 -	0,40	22	114,4		2	1,60 - 1,70	3	14,7		3
0,40 -	0,50	79	410,6		2	1,70 - 1,80	3	14,7		3
0,50 -	0,60	31	161,1		2	1,80 - 1,90	4	19,7		3
0,60 -	0,70	4 6	239,1		2	1,90 - 2,00	4	19,7		3
0,70 -	0,80	56	291,1		2	2,00 - 2,10	4	19,7		3
0,80 -	0,90	51	265,1		2	2,10 - 2,20	5	23,3		4
0,90 -	1,00	76	395,0		2	2,20 - 2,30	5	23,3		4
1,00 -	1,10	62	322,3		2	2,30 - 2,40	6	28,0		4
1,10 -	1,20	59	289,9		3	2,40 - 2,50	8	37,3		4
1,20 -	1,30	69	339,1		3					

⁻ PENETROMETRO DINAMICO tipo : TG 30-20 4x4

⁻ M (massa battente)= 30,00 kg - H (altezza caduta)= 0,20 m - A (area punta)= 10,00 cm² - D(diam. punta)= 35,70 mm

⁻ Numero Colpi Punta N = N(10) [δ = 10 cm] - Uso rive

⁻ Uso rivestimento / fanghi iniezione : NO


PROVA PENETROMETRICA DINAMICA DIAGRAMMA NUMERO COLPI PUNTA - Rpd

n° 1

Riferimento: bie1-13

Scala 1: 50

- data : 23/07/2013 Realizzazione soppalco - indagine : - cantiere : Via Gofi di Pecora - quota inizio: Piano pavimento Bientina - prof. falda: località Falda non rilevata

⁻ PENETROMETRO DINAMICO tipo : TG 30-20 4x4

⁻ M (massa battente)= 30,00 kg $\,$ - H (altezza caduta)= 0,20 m $\,$ - A (area punta)= 10,00 cm 2 - D(diam. punta)= 35,70 mm - Numero Colpi Punta $\,$ N = N(10) $\,$ [$\,$ $\,$ $\,$ = 10 cm] $\,$ - Uso rivestimento / fanghi iniezione $\,$: NO

Riferimento: bie1-13

PROVA PENETROMETRICA DINAMICA TABELLE VALORI DI RESISTENZA

n° 2

Pd2

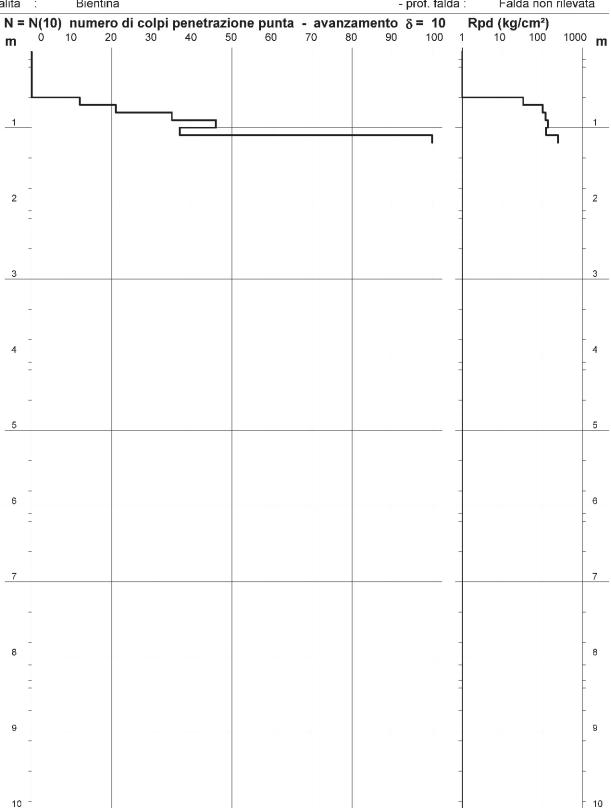
Realizzazione soppalco 23/07/2013 - indagine : - data : - cantiere : Via Gofi di Pecora - quota inizio: Piano pavimento - località : Bientina - prof. falda: Falda non rilevata

- note : - pagina :

Prof	.(m)	N(colpi p)	Rpd(kg/cm²)	N(colpi r)	asta	Prof	.(m)	N(colpi p)	Rpd(kg/cm²)	N(colpi r)	asta
0,00 -	0,10				1	0,60 -	0,70	12	62,4		2
0,10 -	0,20				2	0,70 -	0,80	21	109,2		2
0,20 -	0,30				2	0,80 -	0,90	35	181,9		2
0,30 -	0,40				2	0,90 -	1,00	46	239,1		2
0,40 -	0,50				2	1,00 -	1,10	37	192,3		2
0,50 -	0,60				2	1,10 -	1,20	100	491,4		3

⁻ PENETROMETRO DINAMICO tipo : TG 30-20 4x4

⁻ M (massa battente)= 30,00 kg $\,$ - H (altezza caduta)= 0,20 m $\,$ - A (area punta)= 10,00 cm 2 $\,$ - D(diam. punta)= 35,70 mm $\,$ - Numero Colpi Punta $\,$ N = N(10) $\,$ [$\,$ $\,$ $\,$ = 10 cm] $\,$ - Uso rivestimento / fanghi iniezione $\,$: NO


PROVA PENETROMETRICA DINAMICA DIAGRAMMA NUMERO COLPI PUNTA - Rpd

n° 2

Riferimento: bie1-13

Scala 1: 50

- indagine : Realizzazione soppalco
- cantiere : Via Gofi di Pecora
- località : Bientina
- data : 23/07/2013
- quota inizio : Piano pavimento
- prof. falda : Falda non rilevata

⁻ PENETROMETRO DINAMICO tipo : TG 30-20 4x4

⁻ M (massa battente)= 30,00 kg - H (altezza caduta)= 0,20 m - A (area punta)= 10,00 cm² - D(diam. punta)= 35,70 mm

⁻ Numero Colpi Punta N = N(10) [δ = 10 cm]

⁻ Uso rivestimento / fanghi iniezione : NO

Riferimento: 55-06____

PROVA PENETROMETRICA DINAMICA TABELLE VALORI DI RESISTENZA

n° 2

Pd3

Incontrato Nicola e C. snc - data : - indagine : 07/07/2016

Realizzazione tettoia - quota inizio :

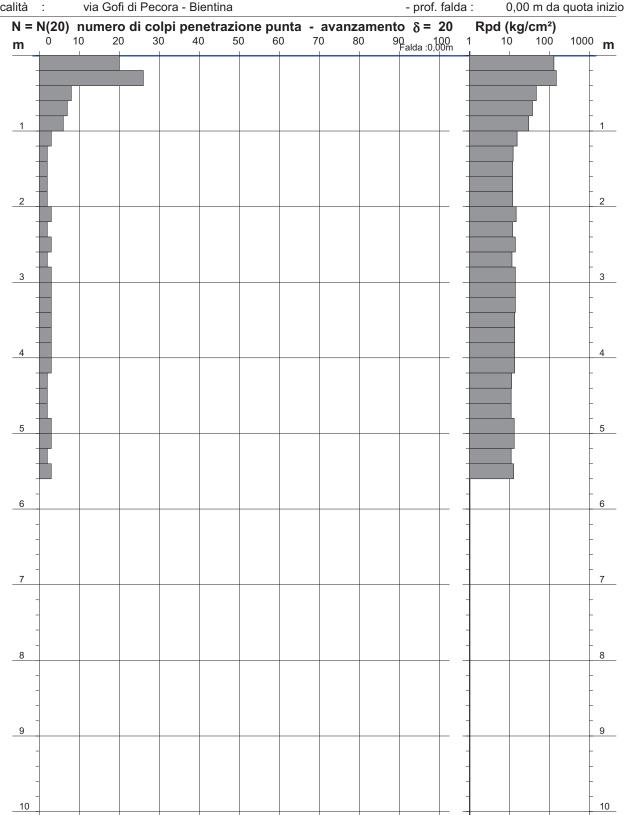
- cantiere : - località : - prof. falda : via Gofi di Pecora - Bientina 0,00 m da quota inizio

- note : - pagina :

Prof.(r	n)	N(colpi p)	Rpd(kg/cm²)	N(colpi r)	asta	Prof.(m)	N(colpi p)	Rpd(kg/cm²)	N(colpi r)	asta
	20	20	210,1		1	2,80 - 3,00	3	24,8		4
0,20 - 0,	40	26	273,2		1	3,00 - 3,20	3	24,8		4
	60	8	77,1		2	3,20 - 3,40	3	24,8		4
0,60 - 0,	80	7	67,5		2	3,40 - 3,60	3	23,2		5
0,80 - 1,	00	6	57,9		2	3,60 - 3,80	3	23,2		5
	20	3	28,9		2	3,80 - 4,00	3	23,2		5
1,20 - 1,	40	2	19,3		2	4,00 - 4,20	3	23,2		5
1,40 - 1,	60	2	17,8		3	4,20 - 4,40	2	15,5		5
1,60 - 1,	80	2	17,8		3	4,40 - 4,60	2	14,5		6
1,80 - 2,	00	2	17,8		3	4,60 - 4,80	2	14,5		6
2,00 - 2,	20	3	26,7		3	4,80 - 5,00	3	21,8		6
2,20 - 2,	40	2	17,8		3	5,00 - 5,20	3	21,8		6
2,40 - 2,	60	3	24,8		4	5,20 - 5,40	2	14,5		6
2,60 - 2,	80	2	16,6		4	5,40 - 5,60	3	20,5		7

⁻ PENETROMETRO DINAMICO tipo : TG 63-100 EML.C

⁻ M (massa battente)= 63,50 kg $\,$ - H (altezza caduta)= 0,75 m $\,$ - A (area punta)= 20,43 cm 2 $\,$ - D(diam. punta)= 51,00 mm $\,$ - Numero Colpi Punta $\,$ N = N(20) $\,$ [$\,$ $\,$ $\,$ = 20 cm] $\,$ - Uso rivestimento / fanghi iniezione $\,$: NO


PROVA PENETROMETRICA DINAMICA DIAGRAMMA NUMERO COLPI PUNTA - Rpd

n°2 Scala 1: 50

Incontrato Nicola e C. snc - indagine : - data : 07/07/2016

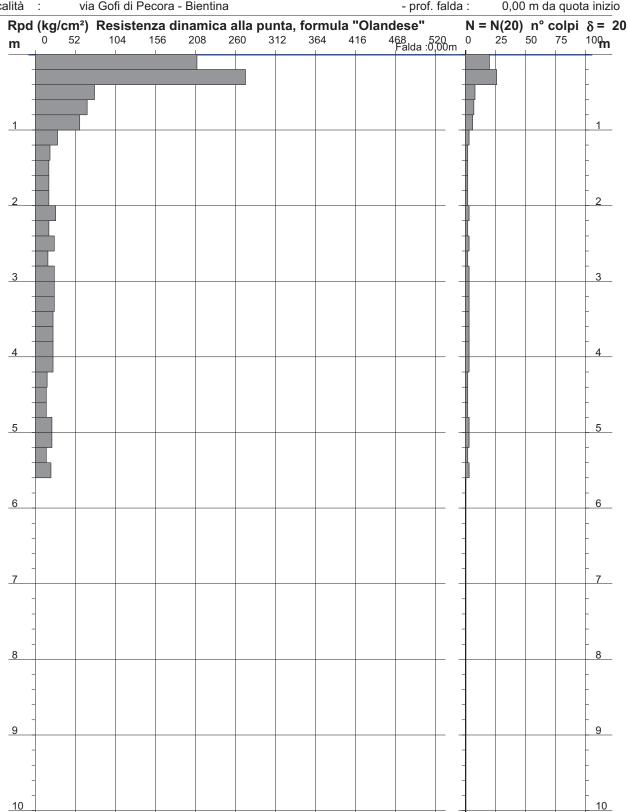
- cantiere : Realizzazione tettoia - quota inizio: 0

località

⁻ PENETROMETRO DINAMICO tipo : TG 63-100 EML.C

⁻ M (massa battente)= **63,50** kg - H (altezza caduta)= **0,75** m - A (area punta)= **20,43** cm² - D(diam. punta)= **51,00 mm** - Numero Colpi Punta N = N(**20**) [δ = 20 cm] - Uso rivestimento / fanghi iniezione : **NO**

n°2


PROVA PENETROMETRICA DINAMICA DIAGRAMMA RESISTENZA DINAMICA PUNTA

Scala 1: 50

Incontrato Nicola e C. snc - data : - indagine : 07/07/2016

- cantiere : Realizzazione tettoia - quota inizio: 0

 località via Gofi di Pecora - Bientina - prof. falda: 0,00 m da quota inizio

⁻ PENETROMETRO DINAMICO tipo : TG 63-100 EML.C

⁻ M (massa battente)= 63,50 kg - H (altezza caduta)= 0,75 m - A (area punta)= 20,43 cm² - D(diam. punta)= 51,00 mm

⁻ Numero Colpi Punta N = N(20) [δ = 20 cm]

PROVA PENETROMETRICA STATICA LETTURE DI CAMPAGNA / VALORI DI RESISTENZA

CPT 1 2.0105-035

- committente :

- lavoro : - località: Costruzione Capannone

Bientina (PI) - Via Gofi di Pecora

- data :

29/07/1998

- quota inizio:

Piano Campagna 3,80 da quota inizio

- assist. cantiere :

- falda :

- data emiss.: -----

prf	L1	L2	qc	fs	qc/fs	prf	L1	L2	qc	fs	qc/fs
m		1=1	Kg/cm ²	Kg/cm ²		m			Kg/cm ²	Kg/cm ²	6#25F63
0,20						1 40.00	05.0	04.0	05.0	8.55	
0,40			3.00	0.07	-	10,00	25,0	34,0	25,0	0,73	34,0
				0,87		10,20	34,0	45,0	34,0	0,87	39,0
0,60	23,0	36,0	23,0	0,87	27,0	10,40	29,0	42,0	29,0	0.73	40,0
0,80	27,0	40,0	27,0	1,60	17,0	10,60	22,0	33,0	22,0	0,53	41,0
1,00	38,0	62,0	38,0	2,20	17,0	10,80	23,0	31,0	23,0	0,67	34.0
1,20	48,0	81,0	48,0	2,07	23,0	11,00	24,0	34,0	24,0	1,00	24,0
1,40	29,0	60,0	29,0	1,40	21,0	11,20	23,0	38,0	23,0	0,40	57,0
1,60	19,0	40,0	19,0	1,27	15,0	11,40	21,0	27,0	21,0		37,0
1,80	16,0	35,0	16,0	1,00	16.0	11.60		27,0	21,0	0,67	31,0
2,00	14,0	29,0	14.0	0,73	19,0	11,80	17,0		17,0	0,67	25,0
2,20	15,0	26,0	15,0	0,73			17,0	27,0	17,0	0,80	21,0
2,40	15,0	28,0	15,0	0,07	17,0	12,00	41,0	53,0	41,0	1,27	32,0
2,60		20,0	15,0	0,60	25,0	12,20	37,0	56,0	37,0	1,13	33,0
2,00	19,0	28,0	19,0	0,20	95,0	12,40	34,0	51,0	34,0	0,80	42,0
2,80	17,0	20,0	17,0	0,73	23,0	12,60	39,0	51,0	39,0	0,87	45,0
3,00	17,0	28,0	17,0	0,60	28,0	12,80	55,0	68,0	55,0	1,27	43.0
3,20	14,0	23,0	14,0	0,67	21,0	13,00	35,0	54,0	35,0	1,87	19,0
3,40	13,0	23,0	13,0	0,60	22,0	13,20	25,0	53,0	25,0	1,07	23,0
3,60	13,0	22,0	13,0	0,60	22,0	13,40	35,0	51,0	35,0	1,47	24,0
3,80	13,0	22,0	13,0	0,53	24,0	13,60	40.0	62,0	40,0	1,20	33,0
4,00	17,0	25,0	17,0	0,80	21,0	13,80	40,0	58,0	40,0	1,33	30,0
4,20	20,0	32,0	20.0	0,80	25,0	14,00	33,0	53,0	33,0	1,87	18,0
4,40	22,0	34,0	22,0	1,07	21,0	14,20	24,0	52,0	33,0		18,0
4,60	23,0	39,0	23,0	1,00	23,0			32,0	24,0	1,13	21,0
4,80	22,0	37,0	22,0	1,00	22,0	14,40	25,0	42,0	25,0	0,73	34,0
5,00	17,0	32,0	17,0			14,60	47,0	58,0	47,0	0,93	50,0
5,20	17,0			0,87	20,0	14,80	52,0	66,0	52,0	1,27	41,0
		30,0	17,0	0,87	20,0	15,00	34,0	53,0	34,0	1,00	34,0
5,40	18,0	31,0	18,0	1,07	17,0	15,20	42,0	57,0	42,0	1,20	35,0
5,60	23,0	39,0	23,0	1,27	18,0	15,40	50,0	68,0	50,0	1,27	39,0
5,80	26,0	45,0	26,0	1,27	21,0	15,60	60,0	79,0	60,0	1,73	35,0
6,00	27,0	46,0	27,0	1,27	21,0	15,80	51,0	77.0	51,0	1,13	45,0
6,20	28,0	47,0	28,0	1,47	19,0	16.00	50,0	67,0	50,0	1,67	30.0
6,40	23,0	45,0	23,0	0,87	27,0	16,20	55,0	80,0	55,0	2,07	27,0
6,60	20,0	33,0	20,0	0,87	23,0	16,40	35,0	66,0	35,0	1,67	21,0
6,80	19,0	32,0	19,0	0.73	26,0	16,60	31,0	56,0	31,0	1,13	27,0
7,00	12,0	23,0	12,0	0,47	26,0	16,80	83.0	100,0	83,0	2,33	36,0
7,20	8,0	15,0	8,0	0,30	27,0	17,00	35,0	70,0	35,0	2,07	
7,40	7,5	12,0	8,0	0,40	20,0	17,20	37,0	68,0	37,0	1,33	17,0
7.60	7,0	13,0	7,0	0,27	26,0	17,40	50,0			1,33	28,0
7,80	7,0	11,0	7,0	0,47	15,0	17,60		70,0	50,0	1,40	36,0
8,00	6,0	13,0	6,0	0,47			53,0	74,0	53,0	1,40	38,0
8,20		13,0	0,0		22,0	17,80	70,0	91,0	70,0	1,67	42,0
0,20	8,0	12,0	8,0	0,20	40,0	18,00	68,0	93,0	68,0	1,93	35,0
8,40	8,0	11,0	8,0	0,43	18,0	18,20	29,0	58,0	29,0	1,00	29,0
8,60	5,5	12,0	6,0	0,27	22,0	18,40	11,0	26,0	11,0	1,07	10,0
8,80	5,0	9,0	5,0	1,13	4,0	18,60	30,0	46,0	30,0	0,87	35,0
9,00	23,0	40,0	23,0	1,27	18,0	18,80	11,0	24,0	11,0	0.47	24,0
9,20	36,0	55,0	36,0	1,00	36,0	19,00	11,0	18,0	11,0	0,53	21,0
9,40	43,0	58,0	43,0	1,13	38,0	19,20	12,0	20,0	12,0	0,60	20,0
9,60	37,0	54,0	37,0	0,87	43,0	19,40	40,0	49,0	40.0	0,47	86,0
9,80	29,0	42,0	29,0	0,60	48.0	19,60	15,0	22,0	15,0	0,-1	00,0

⁻ PENETROMETRO STATICO tipo da 16 t - (senza anello allargatore) - COSTANTE DI TRASFORMAZIONE Ct = 10 - Velocità avanzamento punta 2 cm/s - punta meccanica tipo Begemann ø = 35.7 mm (area punta 10 cm² - apertura 60°) - manicotto laterale (superficie 150 cm²)

PROVA PENETROMETRICA STATICA DIAGRAMMA DI RESISTENZA

CPT 1

2.0105-035

- committente :

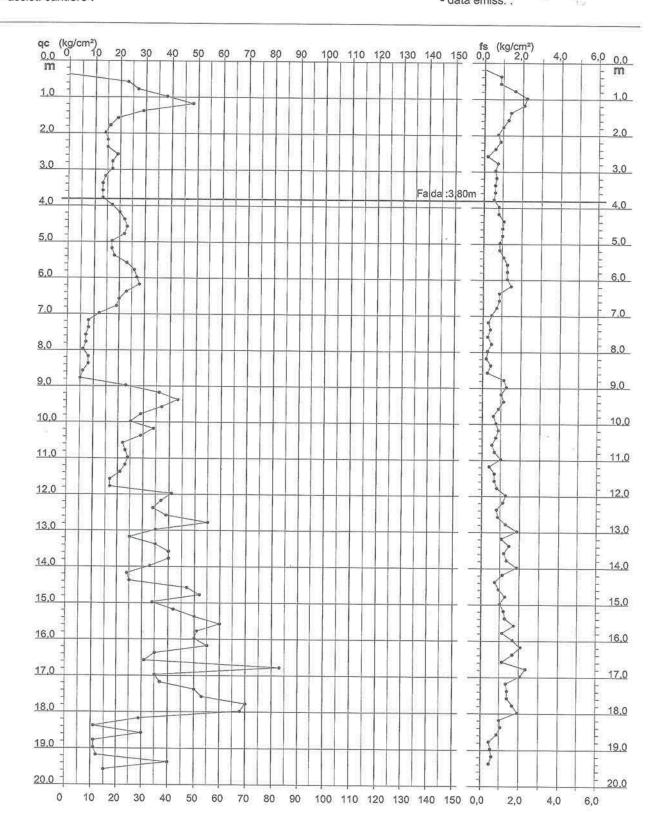
lavoro :località :

Costruzione Capannone

Bientina (PI) - Via Gofi di Pecora

- assist. cantiere :

- data :


- quota inizio :

- falda :

- data emiss. :

29/07/1998 Piano Campagna

3,80 da quota inizio

PROVA PENETROMETRICA STATICA VALUTAZIONI LITOLOGICHE

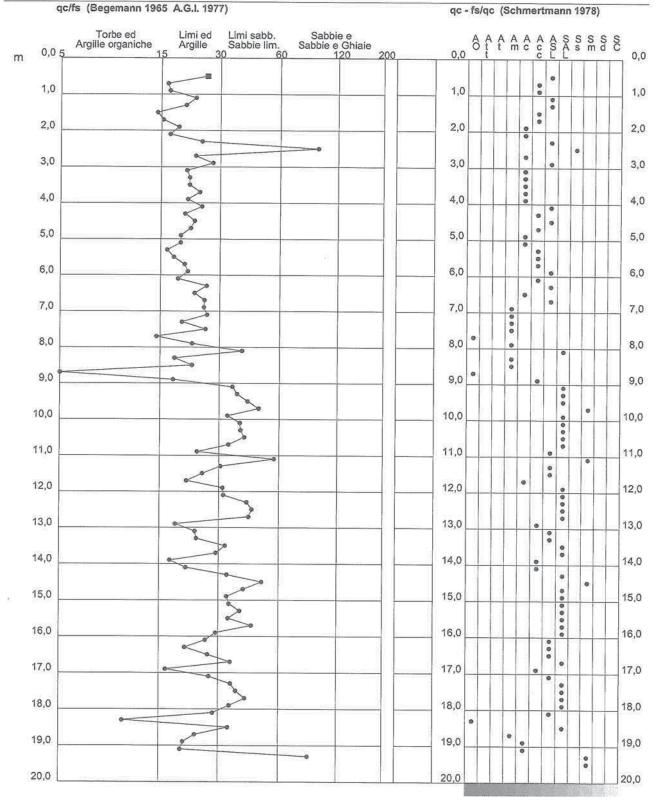
CPT 1

2.0105-035

- committente :

- lavoro: - località : Costruzione Capannone

Bientina (PI) - Via Gofi di Pecora


- assist. cantiere :

- data: - quota inizio: 29/07/1998

Piano Campagna 3,80 da quota inizio

- falda:

- data emiss. :

PROVA PENETROMETRICA STATICA TABELLA PARAMETRI GEOTECNICI

CPT 1

2.0105-035

- committente :

- assist. cantiere :

- lavoro: - località: Costruzione Capannone

Bientina (PI) - Via Gofi di Pecora

- data :

29/07/1998

- quota inizio: - falda :

- data emiss. :

Piano Campagna 3,80 da quota inizio

				IIII	NAT	URA	COES	IVA			Ш		NATI	RA	OR	MAT	ARE		
Prof m	. qc qc/fs kg/cm² (-)	Litol.	a Y' t/m³	p'vo kg/cm²	Cu kg/cm²	OCR (-)	Eu50 kg/c	Eu25 m²	Mo kg/cm²	Dr %	ø1s (9	ø2s (°)	ø3s (°)	ø4s (°)	ødm (°)	ømy (°)	Amax/g	E'50 kg/cr	
0.20 0.40 0.60 0.80 1.20 1.40 1.60 2.00 2.20 2.40 2.60 3.20 3.40 4.60 4.20 5.20 5.20 5.20 6.20 6.20 6.20 6.20 6.20 6.20 6.20 6	23 27 27 27 27 27 27 27 38 29 21 19 15 16 14 19 95 17 28 17 28 17 29 17 28 17 29 18 17 28 18 22 22 21 23 22 24 22 25 27 21 28 29 29 21 20 25 21 27 21 28 22 21 23 22 22 24 28 25 28 26 28 27 28 28 28 29 28 20 28 21 28 21 28 22 28 23 28 24 28 26 28 27 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 2	4/:: 4/:: 4/:: 2/// 2/// 2/// 2/// 2///	1,855 1,855	0,04 0,11 0,119 0,126 0,303 0,37 0,444 0,452 0,559 0,637 0,680 0,724 0,766 0,780 0,891 0,997 0,991 1,024 1,124 1,126 1,127 1,127 1,128 1,129 1,139 1,1	0.87 1.27 1.60 0.98 0.70 0.64 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.72 0.72 0.72 0.72 0.75 0.72 0.75 0.72 0.75 0.72 0.75 0.72 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75	23,195,139,84,64,457,90,64,51,44,064,54,88,77,17,20,96,63,88,20,4,4,4,4,11,11,4,4,1,4,1,4,4,4,4,4,4,4,	148 161 1215 272 118 107 113 113 113 113 113 125 131 150 167 180 180 182 216 227 222 227 228 227 228 227 228 229 229 229 229 229 229 229 229 229	2211 2422 3233 408 408 198 198 1777 162 224 220 270 280 294 334 333 341 333 341 333 341 333 341 343 344 404 441 333 346 466 466 479 479 479 479 479 479 479 479 479 479		755 744 803 833 62 	399 308 309 307 317 32 323 322 322 322 322 322 322 323 323	40 40 41 41 41 41 41 41 41 41 41 41 41 41 41	42 42 43 43 43 43 43 43 43 43 43 45 41 41 41 41 41 41 41 41 41 41 41 41 41	444 444 445 43 43 440 440 440 440 440 440 440 440 4	400 400 400 400 400 400 400 400 400 400	28 28 30 31 29 27 27 28 28 28 28 28 28 28 28 28 29 29 28 28 29 28 28 28 29 28 28 29 28 28 28 29 28 28 28 28 28 27 26 28 28 28 28 28 28 28 28 28 28 28 28 28	0,175 0,170 0,190 0,201 0,190 0,201 0,137 0,064 0,047 0,052 0,054 0,050 0,048 0,056 0,057 0,059 0,044 0,034 0,035 0,065 0,047 0,050 0,048 0,056 0,077 0,059 0,049 0,031 0,029 0,031 0,028	38 45 45 47 2 48 42 45 74 8 43 35 35	58 69 9 90 108 108 129 93 111 73 87 55 66 99 60 72 58 69 69 60 72 58 69 60 60 72 58 69 60 60 72 58 69 60 60 72 58 69 60 60 72 58 69 60 60 72 58 69 60 60 72 58 69 60 60 60 60 60 60 60 60 60 60 60 60 60
11,80 12,00 12,20 12,40 12,60 12,80 13,00 13,20 13,40 14,20 14,40 14,60 15,20 15,40 15,60 16,80 16,00 17,20 17,40 17,60 17,80 18,20 18,40 18,60 18,80 19,00 19,20 19,40 19,60	17 25 17 21 41 32 37 33 34 42 35 43 35 19 25 23 35 24 40 30 33 318 24 21 35 24 40 30 33 318 24 21 34 42 35 50 36 60 35 51 45 50 36 51 27 35 127 36 29 29 29 11 24 40 30 30 35 11 24 40 30 31 31 32 35 33 40 30 33 31 40 30 40 40 40 40	2//// 3:::: 3:::: 4::: 4::: 4::: 4::: 4::	0,97 0,90 0,89 0,89 0,90 0,93 0,93 0,94 0,93 1,00 0,97 0,97 0,97 0,97 0,98 0,92 0,93 0,92 0,93 0,92 0,93 0,93 0,93 0,94 0,93 0,93 0,94 0,93 0,94 0,93 0,94 0,93 0,94 0,94 0,95 0,95 0,95 0,95 0,95 0,95 0,95 0,95	1,88 1,90 1,92 1,94 1,96 1,98 1,99 2,01 2,03 2,05 2,07 2,08 2,10	0,72 0,72 1,17 0,91 1,17 1,33 1,10 0,89 	2,8 4,3,4,4 5,1,9,0 1,1,2,2,1,1,2,1,5 1,5	367 370 419 426 430 430 448 4441 	551 555 628 639 645 652 662 671 661 716 671 772 775 795 805 772 478 479 479 508 584	54 54 	33 29 26 30 42 25 30 29 21 11 12 34 37 22 29 34 41 37 50 20 21 11 12 22 23 34 43 43 43 43 43 43 43 43 43 43 43 43	33 32 32 32 32 32 32 32 32 32 32 32 32 3	35 34 35 36 33 34 35 36 36 36 36 36 36 36 36 36 36 36 36 36	38 37 37 36 38 38 38 38 37 37 38 38 38 38 37 37 38 38 38 38 37 37 36 36 38 37 37 37 38 38 38 37 37 38 38 38 37 37 38 38 38 37 37 38 38 38 37 37 38 38 38 37 37 38 38 38 38 37 37 38 38 38 38 37 37 38 38 38 38 37 37 38 38 38 38 37 37 37 38 38 38 38 37 37 37 38 38 38 38 37 37 37 37 38 38 38 38 38 37 37 37 37 37 37 37 37 37 37 37 37 37	41 40 40 40 40 40 40 40 40 40 40 40 40 40	300 299 301 297 299 310 297 299 298 266 266 266 300 301 301 303 303 303 311 326 328 228 228 228 228 228 228 228 228 228	300 329 301 329 303 303 303 303 303 303 303 313 313 313		68 62 57 65 58 62 58 83 88 82 58 83 88 81 17 113 88 50 67 67 67	103 123 123 111 85 102 98 117 138 165 88 105 63 75 88 105 100 120 100 120 100 120 150 150 180 155 150 138 165 180 125 150 138 165 88 105 78 93 125 150 138 165 88 105 78 93 111 125 150 170 204 773 87

PROVA PENETROMETRICA STATICA LETTURE DI CAMPAGNA / VALORI DI RESISTENZA

CPT 2

2.0105-035

- committente :

- assist. cantiere :

- lavoro : - località : Costruzione Capannone

Bientina (PI) - Via Gofi di Pecora

- data :

- quota inizio:

29/07/2098 Piano Campagna

- falda :

Falda non rilevata - data emiss. :

prf	L1	L2	qc	fs	qc/fs	prf	L1	L2	qc	fs	qc/fs
m	38 9		Kg/cm ²	Kg/cm ²		m	- 3	-	Kg/cm ²	Kg/cm ²	1/2
0,20						8,40	11,0	17,0	11,0	0,40	27,0
0,40						8,60	11.0	17,0	11.0	0,47	24,0
0,60	****		(22)			8,80	11,0	18,0	11.0	0,47	24,0
0,80		****				9,00	6,0	13,0	6,0	0,20	30,0
1,00			77	0,47		9,20	12,0	15,0	12,0	0.33	36,0
1,20	14,0	21,0	14.0	0,53	26,0	9,40	7,0	12,0	7,0	0,33	21,0
1,40	13,0	21,0	13,0	0,73	18,0	9,60	12,0	17,0	12,0	0,47	26,0
1,60	14,0	25,0	14,0	0,53	26,0	9,80	7,0	14,0	7,0	0,40	17,0
1,80	14,0	22,0	14,0	0,60	23,0	10,00	6,0	12,0	6,0	0,33	18,0
2,00	13,0	22,0	13,0	0,53	24.0	10,20	6,0	11,0	6,0	0,33	18,0
2,20	8,0	16,0	8,0	0,27	30,0	10,40	6,0	11.0	6,0	0,33	18,0
2,40	12,0	16,0	12,0	0,40	30,0	10,60	6,0	11,0	6,0	0,20	30,0
2,60	11,0	17,0	11,0	0,47	24,0	10,80	7,0	10,0	7,0	0,27	26,0
2,80	9,0	16,0	9,0	0,67	13,0	11,00	11,0	15,0	11,0	0,33	33,0
3,00	12,0	22,0	12,0	0,87	14,0	11,20	6,0	11,0	6,0	0,40	15,0
3,20	14,0	27,0	14,0	1,00	14,0	11,40	7,0	13,0	7,0	0,33	21,0
3,40	15,0	30,0	15,0	0,93	16,0	11,60	8,0	13,0	8,0	0,40	20,0
3,60	16,0	30,0	16,0	1,00	16,0	11,80	6,0	12,0	6,0	0,33	18,0
3,80	20,0	35,0	20,0	1,33	15,0	12,00	6,0	11,0	6,0	0,33	18,0
4,00	20,0	40,0	20,0	1,40	14,0	12,20	6,0	11,0	6,0	0,33	18,0
4,20	21,0	42,0	21,0	1,40	15,0	12,40	7.0	12,0	7,0	0,33	21.0
4,40	22,0	43,0	22,0	1,40	16,0	12,60	6,0	11,0	6,0	0,40	15,0
4,60	22,0	43,0	22,0	1,47	15,0	12,80	6,0	12,0	6,0	0,40	15,0
4,80	21,0	43,0	21,0	1,27	17,0	13,00	6,0	12,0	6,0	0,60	10,0
5,00	23,0	42,0	23,0	1,47	16,0	13,20	7,0	16,0	7,0	0,47	15,0
5,20	21,0	43,0	21,0	1,20	17,0	13,40	7,0	14,0	7,0	0,37	19,0
5,40	19,0	37,0	19,0	1,13	17,0	13,60	7,5	13,0	8,0	0,40	20,0
5,60	11,0	28,0	11,0	0,40	27,0	13,80	6,0	12,0	6,0	0,47	13,0
5,80	11,0	17,0	11,0	0,40	27,0	14,00	7,0	14,0	7,0	0,40	17,0
6,00	9,0	15,0	9,0	0,47	19,0	14,20	8,0	14,0	8,0	0,37	22,0
6,20	11,0	18,0	11,0	0,60	18,0	14,40	8,5	14,0	8,0	0,20	40,0
6,40	13,0	22,0	13,0	0,80	16,0	14,60	13,0	16,0	13,0	0,27	49,0
6,60	10,0	22,0	10,0	0,40	25,0	14,80	10,0	14,0	10,0	0,33	30,0
6,80	10,0	16,0	10,0	0,67	15,0	15,00	20,0	25,0	20,0	0,27	75,0
7,00	12,0	22,0	12,0	1,27	9,0	15,20	12,0	16,0	12,0	1,60	7,0
7,20	12,0	31,0	12,0	0,33	36,0	15,40	46,0	70,0	46,0	0,67	69,0
7,40	8,0	13,0	8,0	0,33	24,0	15,60	120,0	130,0	120,0	2,07	58,0
7,60	5,0	10,0	5,0	0,33	15,0	15,80	30,0	61,0	30,0	1,33	22,0
7,80	5,0	10,0	5,0	0,33	15,0	16,00	80,0	100,0	80,0	2,67	30,0
8,00	5,0	10,0	5,0	0,33	15,0	16,20	120,0	160,0	120,0	1,33	90,0
8,20	5,0	10,0	5,0	0,40	12,0	16.40	250.0	270,0	250.0		-

⁻ PENETROMETRO STATICO tipo da 16 t - (senza anello allargatore) - COSTANTE DI TRASFORMAZIONE Ct = 10 - Velocità avanzamento punta 2 cm/s - punta meccanica tipo Begemann ø = 35.7 mm (area punta 10 cm² - apertura 60°) - manicotto laterale (superficie 150 cm²)

PROVA PENETROMETRICA STATICA DIAGRAMMA DI RESISTENZA

CPT 2

2.0105-035

- committente :

- lavoro: - località : Costruzione Capannone

Bientina (PI) - Via Gofi di Pecora

- assist. cantiere :

- data :

- quota inizio:

- falda:

29/07/2098 Piano Campagna

Falda non rilevata

18,0

19.0

20,0

6,0

2,0

4,0

80 90 100 110 120 130 140 150 0,0

19,0

20,0

0

10 20 30

40

50 60 70

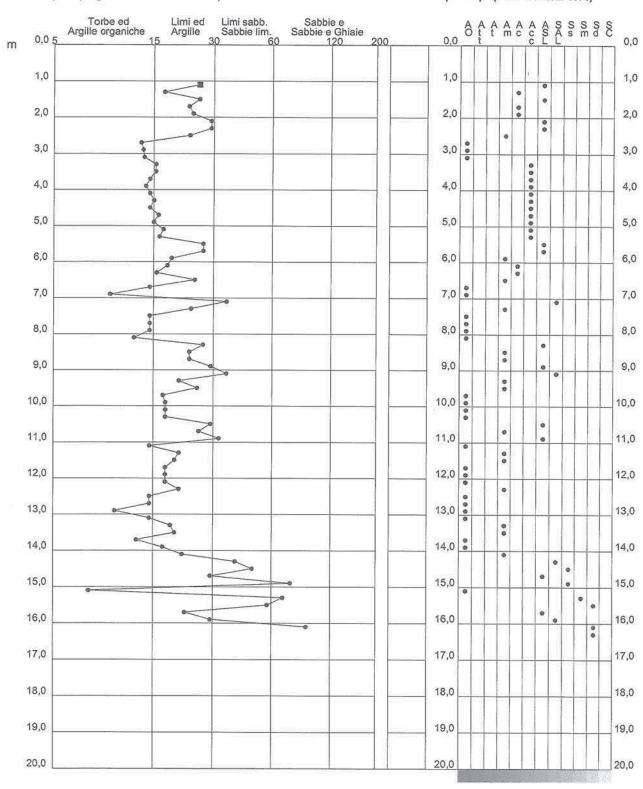
PROVA PENETROMETRICA STATICA VALUTAZIONI LITOLOGICHE

CPT 2

2.0105-035

- committente :

lavoro :


Costruzione Capannone

Bientina (PI) - Via Gofi di Pecora

- località: - assist. cantiere: - data: - quota inizio: 29/07/2098

- falda : - data emiss. : Piano Campagna Falda non rilevata

PROVA PENETROMETRICA STATICA TABELLA PARAMETRI GEOTECNICI

CPT 2

2.0105-035

- committente :

- lavoro: - località :

Costruzione Capannone Bientina (PI) - Via Gofi di Pecora

- assist. cantiere:

- data :

- quota inizio : - falda :

29/07/2098 Piano Campagna Falda non rilevata

- data emiss. :

				3		INA	TURA	¢þë	siva		ШШ		IIII	NATI	IRA	GRA	NψL	ARE		
Prof.	qc kg/cm²	qc/fs (-)	Natura Litol.	Y' t/m³	p'vo kg/cm²	Cu kg/cm²	OCR (-)	Eu50 kg/d	Eu25	Ma kg/cm²	Dr %	ø1s (°)	ø2s (°)	ø3s (°)	ø4s (°)	ødm (°)	ømy (°)	Amax/g (-)	E'50 kg/cm	E'25 Mo n² kg/cm²
0,20 0,40 0,60	=	=	777	1,85 1,85 1,85	0,04	1	:	222	-	20	:-	-		=	-	=	-	=	Ξ	NI I
0,80 1,00 1,20		2	??? ??? ???	1,85	0,11 0,15 0,19		=	Ξ	=	22	=	=	-	=	=	=	-	=	Ξ	
1,40	14 13 14	26 18 26	21111 21111 21111	1,85 1,85 1,85	0,22 0,26 0,30	0,64 0,60 0,64	23,4 18,1 16,3	108 103 108	162 154 162	48 47 48	=	-	-	-	Ξ	=	=	=	-	= =
1,80 2,00 2,20	14 13 8	23 24 30	2/// 2//// 4/:/:	1,85 1,85 1,85	0,33	0,64 0,60 0,40	14,1 11,6 6,1	108 103 107	162 154 160	48 47 35	 7		32				-		-	2 2
2,40 2,60 2,80	12 11 9	30 24 13	4/:/: 2//// 2////	1,85 1,85	0,41 0,44 0,48	0,57	8,6	105 119	158 179	45 42	19	29 31 	34	35 36	39 40 	28 30 	26 26	0,016 0,036	13 20	20 24 30 36
3,00	12 14	14 14	2////	1,85 1,85 1,85	0,52 0,55 0,59	0,45 0,57 0,64	5,3 6,5 6,9	142 143 150	213 214 224	38 45 48	Ī.	-	Ξ		=	=	=	Ξ	=	ī ī—
3,40 3,60 3,80	15 16 20 20	16 16 15	2/// 2//// 4/:/:	1,85 1,85 1,85	0,63 0,67 0,70 0,74	0,67 0,70 0,80	6,8 6,6 7,4	160 170 173	240 256 260	50 52 60	25	32	34	37	40	30	27	0,048	33	50 60
4,00 4,20 4,40	20 21 22	14 15 16	4/:/: 4/:/: 4/:/:	1,85 1,85 1,85	0,74 0,78 0,81	0,80 0,82 0,85	6,9 6,8 6,6	186 198 209	280 296 313	60 63 66	24 25 25	31 31 31	34 34 34	37 37 37 37	40 40 40	30 30 30	27 27 28	0,046 0,047 0,048	33 33 35	50 60 53 63 55 66
4,60 4,80 5,00	22 21 23	15 17 16	41:1: 41:1: 41:1:	1,85 1,85 1,85	0,85 0,89 0,93	0,85 0,82 0,87	6,2 5.7	223 238 247	334 358 371	66 63 69	24 21 23	31 31 31	34 34 34	37 37 37 37	40 40 40	29 29 29	27 27 27 28 28 27 28 27	0,045 0,040 0,044	37 37 35 38	55 66 53 63 58 69
5,20 5,40	21 19	17 17	4/:/:	1,85 1,85	0,96	0,82	5,8 5,2 4,6 2,8	264 278	396 418	63 58	19	31	34	36	40	28		0,037	35	53 63
5,60 5,80 6,00 6,20	11 11 9	27 27 19	2//// 2//// 2//// 2////	1,85 1,85 1,85	1,04 1,07 1,11	0,54 0,54 0,45 0,54	2,8 2,6 2,0	275 279 251	412 419 377	42 42 38	Ξ		2	2	Ξ.	II.	Ξ	100	Ξ	= =
6,40 6,60	11 13 10	18 16 25	2////	1,85 1,85 1,85	1,15 1,18 1,22	0,60	2,6 2,4 2,7 2,1 2,0 2,3 2,2	287 312 278	430 467 418	42 47 40	=	=		-			2	12	_	: : ⁻
6,80 7,00 7,20	10 12 12	15 9 36	2/// 2//// 4/:/:	1,85 1,85 1,85	1,22 1,26 1,30 1,33	0,50 0,57 0,57	2,0 2,3 2.2	280 312 314	421 467 471	40 45 45	3	28	31	35	38	25	26		20	30 36
7,20 7,40 7,60 7,80	12 8 5	36 24 15 15	2////	1,85 1,85 1,85	1,33 1,37 1,41 1,44	0,40	1,3	236 33	353 49 49	35 8 8	II.	I		=	=		=	2		= =
8,00 8,20 8,40	5 5 11	15 12 27	1***	1,85 1,85 1,85	1.52	0,25 0,25 0,25	0,7 0,7 0,7 1,7	33 33 33 309	49 49 464	8	= (1				=	Ξ	2	5 5—
8,60	11 11 6	24 24 30	2/// 2//// 4/:/:	1,85	1,55 1,59 1,63	0,54 0,54 0,54	1.6	310 312	466 467 270	42 42 42			22	=				Ξ.	(II)	
9,00 9,20 9,40	12	36 21	4/:/:	1,85 1,85 1,85	1,66 1,70 1,74	0,30 0,57 0,35	0,7 1,6 0,8	180 331 210	496 315	29 45 32	120	28 28	31 31	35 35	38 38	25 25	26 26	=	10 20	15 18 — 30 36 —
9,60 9,80 10,00	12 7 6	26 17 18	2/// 2//// 2////	1,85 1,85 1,85	1,78 1,81 1,85	0,57 0,35 0,30	1,5 0,8 0,6	333 210 180	499 315 270	45 32 29			2	=	Ξ.	II)	Ξ	92		
10,20 10,40 10,60	6 6 7	18 18 30	2//// 2//// 4/:/:	1,85 1,85 1,85	1,89 1,92 1,96	0,30 0,30 0,30	0,6 0,6 0,6	180 180 180	270 270 270	29 29 29	=	28	31	35	38	25	26	=	10	15 18
10,80 11,00 11,20	11	26 33 15	2//// 4/:/: 1***	1,85 1,85 1,85	2,00 2,03 2,07	0,35 0,54 0,30	1.2	210 319 39	315 479 59	32 42 9		28	31	35	38	25	26	12	18	28 33
11,40 11,60 11,80	6 7 8 6	21 20 18	2/// 2/// 2///	1,85 1,85 1,85	2,11 2,15 2,18 2,22	0,35 0,40 0,30	0,6 0,7 0,8 0,5	210 240 180	315 360 270	32 35 29	Ξ	K.	-	Ξ	-	=	=	-	-	
12,00 12,20 12,40	6 6 7	18 18 21	2///	1,85 1,85 1,85	2,22 2,26 2,29	0,30 0,30 0,35	0,5	180 180	270 270	29 29	3 3	2	Ξ		=	=	Ξ	=		: :-
12,60 12,80	6	15 15	2////	1,85 1,85	2,33	0,30	0,6 0,5 0,5	210 39 39	315 59 59	32 9		ā	Ξ	Ξ	Ξ	Ξ	=	=	Ξ	≣ ≣
13,00 13,20 13,40	6 7 7	10 15 19	1***	1,85 1,85 1,85	2,40 2,44 2,48	0,30 0,35 0,35	0,5 0,6 0,5	39 46 210	59 68 315	9 11 32	/2	2			=	=	=		Ξ	: :-
13,60 13,80 14,00	8 6 7	20 13 17	2////	1,85 1,85 1,85	2,52 2,55 2,59	0,40 0,30 0,35	0,6 0,4 0,5	240 39 210	360 59 315	35 9 32	-	1	=	=	Ξ		-	=	=	= =
14,20 14,40 14,60	8 8 13	22 40 49	2//// 4/:/: 4/:/:	1,85 1,85 1,85	2,63 2,66 2,70	0,40 0,40 0,60	0,6 0,6 1,0	240 240 363	360 360 544	35 35 47	2	28 28 28	31 31	35 35	38 38	66	26 26	Ξ	13 22	20 24
14,80 15,00 15,20	10 20 12	30 75 7	4/:/: 4/:/: 2///	1,85 1,85 1,85	2,74 2,77 2,81	0,50 0,80 0,57	0,7 1,3 0,9	300 472 343	450 708 514	40 60 45	122 122	28 28	31 31	35 35	38 38	25 25 25 25 25	26 27	=	17 33	33 39 25 30 50 60
15,40 15,60 15,80	46 120 30	69 58 22	3:::: 3:::: 4/:/:	1,85 1,85 1,85	2,85 2,89 2,92	1,00	1,6	577	866	90	20 52 4	31 35 29 33	34 38 32	36 40	40 42	27 32 25 30	31 35 29	0,038	77 200	115 138 300 360 75 90
16,00 16,20 16,40	80 120 250	30 90	4/:/: 3:::: 3::::	1,85 1,85 1,85	2,96 3,00 3,03	2,67	5,5	802	1203	240	38 51 76	33 35 39	36 37 40	35 38 40 42	38 41 42 44	30 32 36	33 35 39	0,011 0,075 0,108 0,179	50 133 200 417	75 90 200 240 300 360 625 750
			5517.00	1,00	2,30	-	-					-		14	2500	-00	03	0,110	2510	020 :00

PROVA PENETROMETRICA STATICA LETTURE DI CAMPAGNA / VALORI DI RESISTENZA

CPT 3

2.0105-035

- committente :

- assist. cantiere :

- lavoro: - località : Costruzione Capannone

Bientina (PI) - Via Gofi di Pecora

- data :

29/07/2098 - quota inizio:

- falda :

Piano Campagna 2,60 da quota inizio

- data emiss. :

prf	L1	L2	qc	fs	qc/fs	prf	L1	L2	qc	fs	qc/fs
m		<u>-</u> -	Kg/cm ²	Kg/cm ²		m		5	Kg/cm ²	Kg/cm ²	
0,20						10,20	6,5	15.0	6.0	0,53	11,0
0,40	- HANN	-		2002000	2000	10,40	6,0	14,0	6,0	0,33	22,0
0,60			-	507 200 CV	2007200	10,60	6,0	10,0			
0,80			44	1,73			7.0		6,0	0,27	22,0
1,00	22,0	48,0	22,0	1,73	24.0	10,80	7,0	11,0	7,0	0,27	26,0
1,00	20,0	40,0	22,0	1,07	21,0	11,00	5,0	9,0	5,0	0,27	19,0
1,20		36,0	20,0	1,00	20,0	11,20	6,0	10,0	6,0	0,27	22,0
1,40	17,0	32,0	17,0	1,53	11,0	11,40	6,0	10,0	6,0	0,33	18,0
1,60	13,0	36,0	13,0	0,87	15,0	11,60	6,0	11,0	6,0	0,33	18,0
1,80	11,0	24,0	11,0	0,67	16,0	11,80	6,0	11,0	6,0	0,27	22,0
2,00	16,0	26,0	16,0	0,53	30,0	12,00	6,0	10,0	6,0	0,27	22,0
2,20	12,0	20,0	12,0	0,47	26,0	12,20	6.0	10,0	6,0	0,40	15,0
2,40	10,0	17,0	10,0	0,33	30,0	12,40	6,0	12,0	6,0	0,33	18,0
2,60	11,0	16,0	11,0	0,33	33,0	12,60	7,0	12,0	7,0	0,27	26,0
2,80	13,0	18,0	13,0	0,53	24,0	12,80	8,0	12,0	8,0	0,33	24,0
3,00	15,0	23,0	15,0	0,53	28,0	13,00	8,0	13,0	8,0	0,33	24,0
3,20	22,0	30,0	22,0	0,53	41,0	13,20	8,0	13,0	8,0	0,33	24.0
3,40	25,0	33,0	25,0	0,73	34,0	13,40	7,0	12,0	7,0		
3,60	20,0	31,0	20,0	0,67	30,0	13,60	6.0	12,0		0,40	17,0
3,80	21,0	31,0	21,0			13,00	6,0	12,0	6,0	0,40	15,0
4,00		33,0	22,0	0,73	29,0	13,80	6,0	12,0	6,0	0,40	15,0
4,00	22,0	33,0	22,0	0,80	27,0	14,00	6,0	12,0	6,0	0,40	15,0
4,20	22,0	34,0	22,0	0,60	37,0	14,20	6,0	12,0	6,0	0,33	18,0
4,40	20,0	29,0	20,0	0,80	25,0	14,40	6,0	11,0	6,0	0,33	18,0
4,60	21,0	33,0	21,0	0,87	24,0	14,60	6,0	11,0	6,0	0,33	18,0
4,80	21,0	34,0	21,0	0,80	26,0	14,80	8,0	13,0	8,0	0,40	20,0
5,00	16,0	28,0	16,0	0,60	27,0	15,00	7.0	13,0	7.0	0,33	21.0
5,20	11,0	20,0	11,0	0,40	27,0	15,20	7,0	12,0	7.0	0.40	17.0
5,40	10,0	16,0	10,0	0,33	30,0	15.40	7.0	13,0	7.0	0,47	15,0
5,60	11,0	16,0	11,0	0,47	24,0	15,60	8.0	15,0	8,0	0.47	17,0
5,80	13,0	20,0	13,0	0,53	24,0	15,80	9,0	16,0	9,0	0,40	22,0
6,00	13,0	21,0	13,0	0,47	28,0	16,00	10,0	16,0	10,0	0,40	25,0
6,20	11,0	18,0	11,0	0,53	21,0	16,20	8,0	14,0	8,0	0,40	20,0
6,40	10,0	18,0	10,0	0,27	37,0	16,40	7,0	13,0	7,0	0,40	17.0
6,60	9,0	13,0	9,0	0,27	34,0	16,60	6,0	12,0	6,0		
6,80	7,0	11,0	7,0	0,23	30,0	16,80	7,0	12,0	7,0	0,33	18,0
7,00	6,5	10,0	6,0	0,23	18,0		7,0	11.0		0,27	26,0
7,20	5,0	10,0	5,0	0,33		17,00	7,0	11,0	7,0	0,40	17,0
7,40	6,5	9,0	5,0	0,17	30,0	17,20	6,0	12,0	6,0	0,33	18,0
	10.0	9,0	6,0	0,33	18,0	17,40	10,0	15,0	10,0	0,33	30,0
7,60	10,0	15,0	10,0	0,37	27,0	17,60	8,0	13,0	8,0	0,40	20,0
7,80	5,5	11,0	6,0	0,33	18,0	17,80	7,0	13,0	7,0	0,40	17,0
8,00	9,0	14,0	9,0	0,40	22,0	18,00	7,0	13,0	7,0	0,40	17,0
8,20	6,0	12,0	6,0	0,27	22,0	18,20	7,0	13,0	7,0	0,33	21,0
8,40	7,0	11,0	7,0	0,27	26,0	18,40	8,0	13,0	8,0	0,40	20,0
8,60	7,0	11,0	7.0	0,33	21,0	18,60	7,0	13,0	7,0	0,60	12,0
8,80	5,0	10,0	5,0	0,27	19,0	18,80	10,0	19,0	10,0	0,33	30,0
9,00	6,0	10,0	6,0	0,33	18,0	19,00	9,0	14,0	9,0	0.40	22,0
9,20	6,0	11,0	6,0	0,27	22,0	19,20	11,0	17,0	11,0	1.07	10,0
9,40	8,0	12,0	8,0	0,33	24,0	19,40	39,0	55,0	39,0	0,33	117,0
9,60	7,0	12,0	7,0	0,33	21,0	19,60	20,0	25,0	20,0	0,47	43,0
9,80	14,0	19,0	14,0	0,43	32,0	19,80	12,0	19,0			
10,00	9,5	16,0	10,0	0,43	18,0	20,00	14,0	18,0	12,0 14,0	0,27	45,0

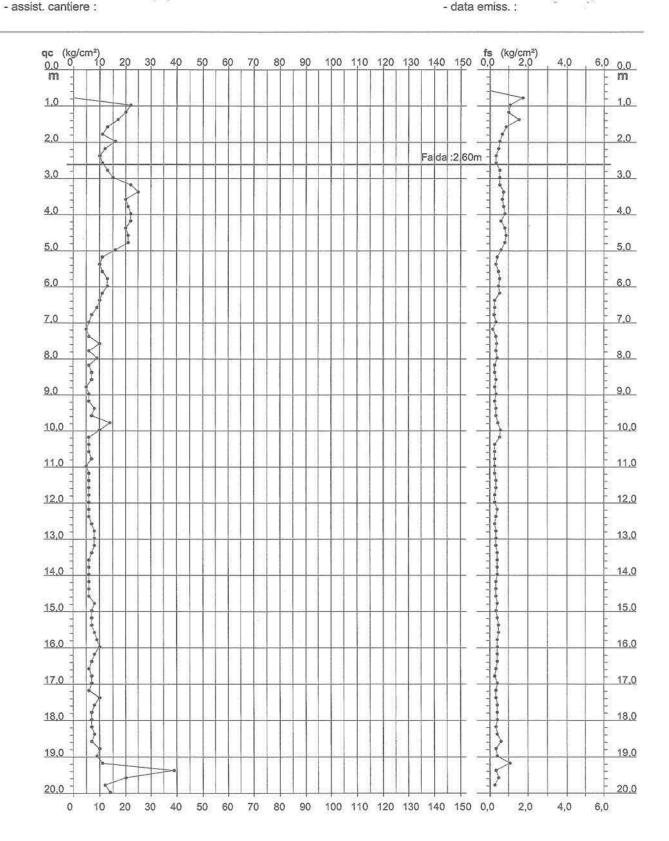
⁻ PENETROMETRO STATICO tipo da 16 t - (senza anello allargatore) - COSTANTE DI TRASFORMAZIONE Ct = 10 - Velocità avanzamento punta 2 cm/s - punta meccanica tipo Begemann ø = 35.7 mm (area punta 10 cm² - apertura 60°) - manicotto laterale (superficie 150 cm²)

CPT 3

2.0105-035

- committente :

- lavoro: - località : Costruzione Capannone


Bientina (PI) - Via Gofi di Pecora

- data :

29/07/2098

- quota inizio: - falda :

Piano Campagna 2,60 da quota inizio

PROVA PENETROMETRICA STATICA VALUTAZIONI LITOLOGICHE

CPT 3

2.0105-035

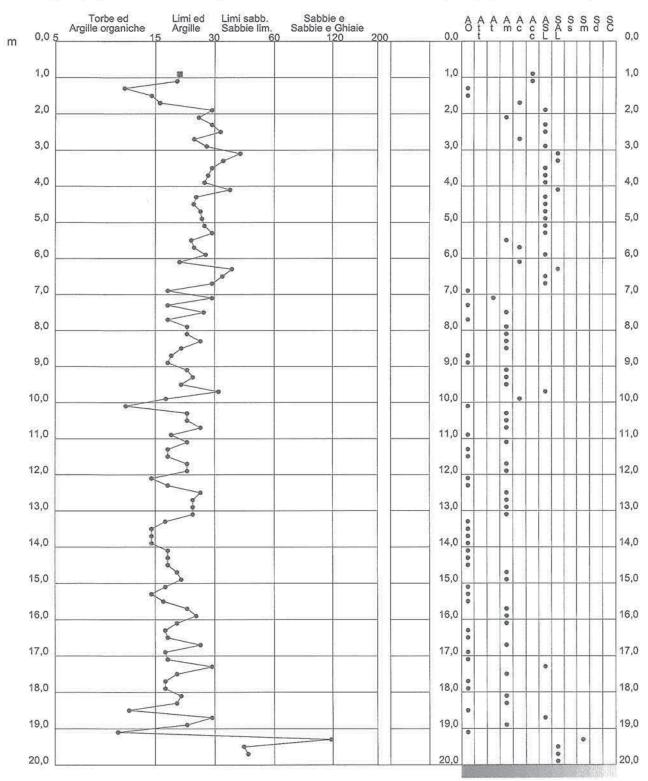
- committente :

lavoro :località :

Costruzione Capannone

Bientina (PI) - Via Gofi di Pecora

- assist. cantiere :


data :quota inizio :

29/07/2098 Piano Cam

Piano Campagna 2,60 da quota inizio

- falda : - data emiss. :

CPT 3

2.0105-035

- committente :

- lavoro:

Costruzione Capannone

Bientina (PI) - Via Gofi di Pecora

- località :

- data :

- quota inizio : - falda :

29/07/2098 Piano Campagna 2,60 da quota inizio

	-		
	1-1-	Sandy of Page 2	
-	Cara	emiss	

211	ua			
-	-	amina	0.00	

- assist. ca	antiere :	Dioni	110 (1	, .	10 00	ii di i	ccora						data		s. :	2,0	ou da	quo	ta mizio
Deef		Market			THE REAL PROPERTY.	TURA		4111111		Ш		NAT	JRA	dRA	NΨL	ARE]	Ш		Ш
Prof. m	qc qc/fs kg/cm² (-)	Natura Litol,	₩m³	p'vo kg/cm²	Cu kg/cm²	OCR (-)	Eu50 Eu kg/cm²	kg/cm²	Dr %	ø1s (9	ø2s (°)	ø3s (9	ø4s (°)	ødm (°)	ømy (°)	Amax/g (-)	E'50 kg/cn	E'25 n² kg/c	
0,20 0,40 0,60		??? ??? ???	1,85 1,85 1,85	0,04 0,07 0,11	Ξ	=		: :	=	2	22		2			120	-	2	
0,80 1,00 1,20	22 21 20 20	??? 4/:/: 4/:/:	1,85 1,85 1,85 1,85	0,15 0,19 0,22	0,85 0,80	42,0 31,2	144 21 136 20		61	37	39	41	43	38	28	0,134	37	55	66
1,40	17 11 13 15	2///	1,85 1,85	0,26 0,30 0,33 0,37	0,72	22,7 15,3	123 18 103 15	4 54 4 47	53	35	38	40 	42	36	27	0,113	33	50 	60 —
1,80 2,00 2,00	11 16 16 30 12 26	2/// 4/:/: 2///	1,85 1,85 1,85	0,33 0,37 0,41	0,54 0,70 0,57	11,4	91 13 118 17 98 14	7 42 7 52	33	33	35	38	41	32	27	0,065	27	40	48
2,40 2,60	10 30	4/:/: 4/:/:	1,85	0,44	0,50	9,6 7,3 7,6	110 16 113 16	5 40 9 42	13 15	30	33 33	36 36	39 39	29 29	26 26	0,025 0,029	17 18	25 28	30 33
2,20 2,40 2,60 2,80 3,00 3,20	22 41	2//// 2//// 3::::	0,93 0,95 0,86	0,48 0,50 0,52	0,60	8,4 9,0	114 17 118 17	1 47 3 50	36	33	36	38	41	32	28	0,071	37	-	66
3,40	25 34 20 30	3:::: 4/:/: 4/:/:	0,86	0,53	0,80	10,0	136 20	60	40 31	34 32	36 35 35	39	41 40	33 31 31	28 27	0,079	42 33	55 63 50	75 60
3,80 4,00 4,20	21 29 22 27 22 37	4/:/: 3::::	0,93 0,93 0,86	0,57 0,59 0,61	0,82 0,85	9,9 9,9	140 21 144 21	66	32 33 32	32 33 33	35 35	38 38 38 38	41 41 41	31 31 31	27 28 28	0,062 0,064 0,062	35 37 37	53 55	63 66 66
4,40 4,60 4,80	21 24	4/:/: 4/:/: 4/:/:	0,93 0,93 0,93	0,62 0,64 0,66	0,80 0,82 0,82	8,6 8,6 8,3	148 22 153 22 158 23	63	28 29 28	34 32 33 33 33 32 32 32	35 35 35	37 37	40	31	28 27 27 27	0,054	37 33 35	53 55 55 50 53 53	60 63
5,00 5,20	16 27 11 27	2///	0,96	0,68	0,70	6,4	176 26 195 29	52	-			37	40	31	-	0,055	35		63
5,40 5,60 5,80	10 30 11 24 13 24 13 28	4/:/: 2//// 2////	0,86 0,91 0,93	0,72 0,73 0,75	0,50 0,54 0,60	4,0 4,2 4,8	200 30 205 30 209 31	42	1	28	31	35	38	26	26 	0,002	17	25	30
6,00 6,20 6,40	13 24 13 28 11 21 10 37	2/// 2//// 4/:/:	0,93 0,91 0,86	0,77	0,60	4,6 3,9	215 32 222 33	47	-	***		=	-		-	-		45	
6,60	9 34 7 30	4/:/:	0,85	0,81 0,82 0,84	0,50 0,45 0,35	3,4 2,9 2,1 1,7 1,3	227 34 224 33 194 29	38	Ξ	28 28 28	31 31	35 35 35	38 38 38	25 25 25	26 26 26		17 15 12	25 23 18	30 27 21
7,00 7,20 7,40	6 18 5 30 6 18	2//// 4/:/: 2////	0,82 0,81 0,82 0,90	0,86 0,87 0,89	0,30 0,25 0,30	1,7 1,3 1,6	173 25 148 22 174 26	25		28	31	35	38	25	25	22	8	13	15
7,60 7.80	10 27 6 18	2///	0.82	0,91	0,50	3,0 1,5 2,5	248 37 175 26	40	20	2	270	Ξ	=	=	Ξ	=			-
8,00 8,20 8,40	9 22 6 22 7 26	2//// 2//// 2////	0,88 0,82 0,84	0,94 0,96 0,98	0,45 0,30 0,35	2,5 1,5 1,7 1,7	239 35 175 26 200 30	29	=			2	=	=	Ξ	=	-		<u>:</u> —
8,60 8,80 9,00	7 21 5 19 6 18	2/// 2//// 2////	0,84 0,84 0,80	0,99 1,01	0,35	7,1	201 30: 149 22:	32	22) (71)	-	-	- E	2	-	-	Ξ	Ξ		=
9,20 9,40	6 22 8 24	2///	0,82 0,82 0,86	1,02 1,04 1,06	0,30 0,30 0,40	1,4 1,3 1,9 1,5	177 26 177 26 227 34	29	1	=	-	7	-	-	=	-	-	-	<u> </u>
9,60 9,80 10,00	7 21 14 32 10 18	2//// 4/:/: 2////	0,84 0,89 0,90	1,07 1,09 1,11	0,35 0,64 0,50	1,5 3,2	204 30: 304 45: 271 40:	32 48	2	28	32	35	38	26	26	0,006	23	35	42
10,20 10,40 10,60	6 11	2////	0,46	1,12	0,30	3,2 2,3 1,2 1,2 1,2	39 5 178 26	9	=	-	=	-	=	-			=	Ξ	<u>:</u> —
10,80 10,80 11,00	6 22 7 26 5 19	2//// 2//// 2////	0,82 0,84 0,80	1,15 1,17 1,19	0,30 0,35 0,25	1,2 1,4 0,9	179 266 206 306 150 225	32		=	-	=	-	-	-	- LE		227	-
11,20 11,40	6 22 6 18	2////	0,82	1,20	0,30	1,1	179 269 179 269	29 29	1					:	2		2		
11,60 11,80 12,00	6 18 6 22 6 22	2//// 2//// 2////	0,82 0,82 0,82 0,46	1,17 1,19 1,20 1,22 1,23 1,25 1,27 1,28 1,29 1,31 1,33 1,34 1,36 1,38	0,30 0,30 0,30	1,1 1,1 1,0	179 269 180 269 180 270	29	=		-	=	2	2	<u> </u>		55)	22/	-
12,20 12,40 12,60	6 15 6 18	1*** 2/// 2////	0,46 0,82 0,84	1,28	0,30	1,0	39 50 180 270	9 29	-	-		-		-	-	100 m		257	
12,80 13,00	8 24 8 24	2////	0,86	1,33	0,35 0,40 0,40	1,2 1,4 1,4	208 317 235 357 235 357	35 35	Ξ	=	Ξ	<u>.</u>	-	-	-	1	i	1	2
13,20 13,40 13,60	8 24 7 17 6 15	2////	0,86 0,84 0,46	1,36 1,38 1,39	0,40 0,35 0,30	1,4 1,1 0,9	235 353 209 313 39 59	32	=	=	2						1	2	-
13,80 14,00	6 15 6 15	1***	0,46	1,40	0,30	0,9	39 59 39 59	9	=	-		2		=		Ξ.	2	12	1
14,20 14,40 14,60	6 18 6 18 6 18 8 20 7 21	2////	0,82 0,82 0,82	1,42 1,44 1,45	0,30 0,30 0,30	0,9 0,9	180 270 180 270 180 270	29	=	=	=	-	-	-	-	3	Ξ	-	=
14.80	8 20 7 21 7 17	2////	0,86	1,45 1,47 1,49	0,40	0,9 1,2 1,0	237 356 210 315	35 32	=				1		-	- 2	2		=
15,00 15,20 15,40 15,60	7 15 8 17	2////	0,84 0,46 0,86	1,51 1,51 1,53	0,35 0,35 0,40	1,0 1,0 1,2	210 318 45 68 238 357	11	Ξ	-	2	2	Ξ.	2	-	- 2	7	12	2
45.00	9 22 10 25	2////	0,88	1,51 1,53 1,55 1,57	0,45	1,3	265 398 292 437	38 40	-	**			_	#1 #1		122	2	255 1050	
16,40 16,60	8 20 7 17 6 18 7 26 7 17	2////	0,86 0,84 0,82	1,58 1,60 1,62	0,40 0,35 0,30	1,1 0,9 0,8	239 358 210 318 180 270	32		-	-	=	=	-	-	2	=	Ξ	-
16,00 16,20 16,40 16,60 16,80 17,00	7 26 7 17 6 18	2////	0,84 0,84 0,82	1,63	0,35 0,35 0,30	0,9 0,9 0,7	210 315 210 315	32 32	-				I		Ξ	-22			=
	10 30 8 20 7 17 7 17	4/:/:	0,86	1,70	0,50	1,4	180 270 294 441 240 360	29 40 35	1	28	31	35	38	25	26	100	17	25	30
17,60 17,80 18,00 18,20	7 17 7 17 7 21	2//// 2//// 2////	0,84 0,84 0,84	1.72	0,35 0,35 0,35	0,9 0,8 0,8	210 315 210 315 210 315	32 32	Ξ	-			2) 2)	943 534	-	322 333		-	
18,40	8 20 7 12	2////	0,86 0,46	1,77	0,40	1,0 0,8	240 360 46 68	35 11	-		20		<u>=</u> }		-		=	=	-
18,80 19,00 19,20 19,40	10 30 9 22 11 10	2////	0,86 0,88 0,91	1,80	0,50 0,45 0,54	1,3 1,1 1,4	296 444 269 403 316 474	40 38 42		28	31	35	38	25	26	Ξ	17	25	30
19,40 19,60 19,80	39 117 20 43	3:::: 4/:/:	0,90	1,85	0,80	2,2	440 660	60	25 1	31 28	34 31	37 35	40 38	28 25	30 27	0,047	65 33 20	98 1	117 60 36
20,00	12 45 14	4/:/: 2////	0,88 0,94	1,89 1,91	0,57 0,64	1,4	335 503 369 553	45 48	=	28	31	35	38	25	26		20	30	36

PROVA PENETROMETRICA STATICA LETTURE DI CAMPAGNA / VALORI DI RESISTENZA

CPT 4

2.0105-035

- committente :

- lavoro: - località : Costruzione Capannone

Bientina (PI) - Via Gofi di Pecora

- data:

- quota inizio:

30/07/1998

Piano Campagna Falda non rilevata

- assist, cantiere :

- falda : - data emiss.:

			\$1								
prf	L1	L2	qc	fs	qc/fs	prf	L1	L2	qc	fs	qc/fs
m	\15	7/23	Kg/cm ²	Kg/cm ²		m	-		Kg/cm ²	Kg/cm ²	10.
0,20		-				10,20	7,0	10,0	7,0	0,27	26,0
0,40		-	1990	United States	Manager	10.40	5,0	9,0	5,0	0,27	19,0
0,60	5-00/6/E-	700700	122	VZ/AVGTZTS	//2005	10,60	5,0	9,0	5,0	0,27	19,0
0,80	(100000	icarriero.		1,07			5,0	9,0	5,0		
4.00		24.0		1,07	40.0	10,80	5,0	9,0	5,0	0,27	19,0
1,00	15,0	31,0	15,0	1,20	12,0	11,00	5,0	9,0	5,0	0,27	19,0
1,20	17,0	35,0	17,0	0,93	18,0	11,20	5,0	9,0	5,0	0,13	37,0
1,40	18,0	32,0	18,0	1,13	16,0	11,40	10,0	12,0	10,0	0,53	19,0
1,60	13,0	30,0	13,0	0,87	15,0	11,60	5,0	13,0	5,0	0,27	19,0
1,80	12,0	25,0	12,0	0,67	18,0	11,80	8.0	12,0	8,0	0,33	24,0
2,00	12,0	22,0	12,0	0,67	18,0	12,00	7,0	12,0	7,0	0,27	26,0
2,20	11,0	21,0	11,0	0,53	21,0	12,20	7,0	11,0	7,0	0,27	26,0
2,40	14,0	22,0	14,0	0,67	21,0	12,40	6,0	10,0	6,0	0,27	22,0
2,60	12,0	22,0	12,0	0,53	22,0	12,60	6,0	10,0	6,0	0,27	22,0
2,80	12,0	20,0	12,0	0,53	22,0	12,80	15,0	19,0	15,0	0,47	32,0
3,00	12,0	20,0	12,0	0,60	20,0	13,00	29,0	26.0	20.0	0,47	100.0
3,20	13,0	22,0	13,0	0,73	10,0	13,00	29,0	36,0	29,0	0,27	109,0
3,20		22,0	15,0	0,73	18,0	13,20	12,0	16,0	12,0	0,27	45,0
3,40	16,0	27,0	16,0	0,87	18,0	13,40	11,0	15,0	11,0	0,40	27,0
3,60	19,0	32,0	19,0	0,73	26,0	13,60	9,0	15,0	9,0	0,33	27,0
3,80	21,0	32,0	21,0	1,07	20,0	13,80	7,0	12,0	7,0	0,80	9,0
4,00	19,0	35,0	19,0	0,93	20,0	14,00	24,0	36,0	24,0	0,87	28,0
4,20	16,0	30,0	16,0	0,87	18,0	14,20	10,0	23,0	10,0	0,40	25,0
4,40	16,0	29,0	16,0	0,73	22,0	14,40	35,0	41,0	35,0	0,60	58,0
4,60	12,0	23,0	12,0	0,40	30,0	14,60	34,0	43,0	34,0	1,07	32,0
4,80	5,0	11,0	5,0	0,20	25,0	14,80	23,0	39,0	23,0	0,67	34,0
5,00	6,0	9,0	6,0	0,27	22,0	15,00	37,0	47,0	37,0	0,87	43,0
5,20	7,0	11.0	7,0	0,33	21,0	15,20	32,0	45,0	32,0	0,93	34,0
5,40	7,0	12,0	7,0	0,33	21,0	15,40	21,0	35,0	21,0	0,67	31,0
5,60	7,0	12,0	7,0	0,27	26,0	15,60	39,0	49,0	39,0	0,93	42,0
5,80	6,0	10,0	6,0	0,27	22,0	15,80	16,0	30,0	16,0	1,67	10,0
6,00	7,0	11,0	7,0	0,23	30,0	16,00	23,0	48,0	23,0	1,40	16,0
6,20	7,5	11,0	8,0	0,27	30,0	16,20	48,0	40,0	40.0	1,20	40.0
6,40	7,0	11,0	7,0	0,17	42,0			69,0	48,0	1,20	40,0
6,60	4,0	6,5	4,0	0,17	30,0	16,40	60,0	78,0	60,0	1,27	47,0
	4,0	5,5	4,0	0,13		16,60	46,0	65,0	46,0	1,67	28,0
6,80	3,5	5,5	4,0	0,13	30,0	16,80	30,0	55,0	30,0	1,13	26,0
7,00	3,0	5,0	3,0	0,10	30,0	17,00	39,0	56,0	39,0	1,13	34,0
7,20	3,5 2,5	5,0	4,0	0,13	30,0	17,20	66,0	83,0	66,0	1,67	40,0
7,40	2,5	4,5	2,0	0,13	15,0	17,40	75,0	100,0	75,0	0,87	87,0
7,60	3,0	5,0	3,0	0,13	22,0	17,60	47,0	60,0	47,0	1,27	37,0
7,80	12,0	14,0	12,0	0,73	16,0	17,80	22,0	41,0	22,0	0,53	41,0
8,00	19,0	30,0	19,0	0,27	71,0	18,00	40,0	48,0	40,0	0,87	46,0
8,20	20,0	24,0	20,0	0,60	33,0	18,20	18,0	31,0	18,0	1,67	11,0
8,40	37,0	46,0	37,0	0,27	139,0	18,40	48,0	73,0	48,0	0,93	51,0
8,60	7,0	11,0	7,0	0,33	21,0	18,60	26,0	40,0	26,0	1,93	13,0
8,80	15,0	20,0	15,0	0,40	37,0	18,80	19,0	48,0	19,0	0,60	32,0
9,00	5,0	11,0	5,0	0,20	25,0	19,00	14,0	23,0	14,0	0,80	17,0
9,20	5,0	8,0	5,0	0,20	25,0	19,20	13,0	25,0	13,0	0,60	22,0
9,40	5,0	8,0	5,0	0,20		19,40	30.0	20,0			
	5,0	0,0	5,0	0,20	25,0		30,0	39,0	30,0	0,60	50,0
9,60		8,0	5,0	0,27	19,0	19,60	16,0	25,0	16,0	0,07	240,0
9,80	6,0 6,0	10,0 12,0	6,0 6,0	0,40	15,0 30,0	19,80 20,00	13,0 14,0	14,0 22,0	13,0 14,0	0,53	24,0
10,00											

⁻ PENETROMETRO STATICO tipo da 16 t - (senza anello allargatore) - COSTANTE DI TRASFORMAZIONE Ct = 10 - Velocità avanzamento punta 2 cm/s - punta meccanica tipo Begernann ø = 35.7 mm (area punta 10 cm² - apertura 60°) - manicotto laterale (superficie 150 cm²)

CPT 4

2.0105-035

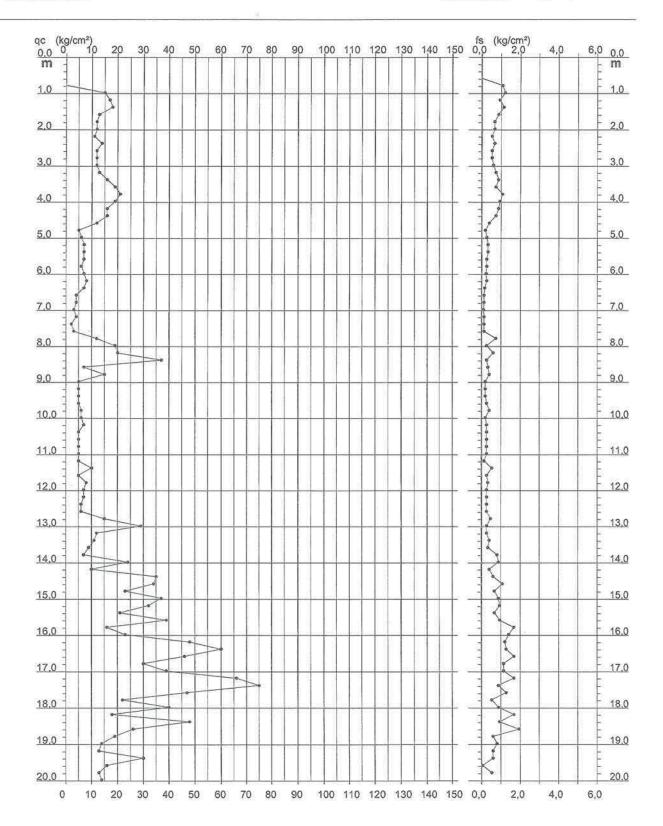
- committente :

lavoro :località :

Costruzione Capannone Bientina (PI) - Via Gofi di Pecora

- assist. cantiere :

Capannone


ecora - falda :

quota inizio :falda :data emiss. :

- data :

30/07/1998 Piano Campagna

Falda non rilevata

PROVA PENETROMETRICA STATICA VALUTAZIONI LITOLOGICHE

CPT 4

2.0105-035

- committente :

lavoro ;località ;

Costruzione Capannone

Bientina (PI) - Via Gofi di Pecora

- assist. cantiere :

- data :

19,0

20,0

19,0

20,0

30/07/1998

quota inizio :falda :

Piano Campagna Falda non rilevata

- data emiss. :

qc/fs (Begemann 1965 A.G.I. 1977) qc - fs/qc (Schmertmann 1978) Sabbie e Sabbie e Ghiaie 120 Torbe ed Argille organiche Limi ed Argille Limi sabb. Sabbie lim. A A A A A A A S S S S S S C S C S A S M d C 0,0 5 0,0 m 1,0 1,0 1,0 2,0 2,0 2,0 3,0 3,0 3,0 4,0 4,0 4,0 5,0 5,0 5,0 6,0 6,0 6,0 7,0 7,0 7,0 8,0 8,0 8,0 9,0 9,0 9,0 10,0 10,0 10,0 11,0 11,0 11,0 12,0 12,0 12,0 13,0 13,0 13,0 0 14,0 14,0 14,0 15,0 15,0 15,0 16,0 16,0 16,0 17,0 17,0 17,0 18,0 18,0 18,0

19,0

20,0

CPT 4

2.0105-035

- committente :

- lavoro : - località :

Costruzione Capannone Bientina (PI) - Via Gofi di Pecora

- assist. cantiere :

- data :

30/07/1998

- quota inizio :

Piano Campagna

- falda :

- data emiss. :

Falda non rilevata

					IIII	LNA	URA	¢øEs	SIVA		111111			VAT	RA	CIRIA	ΝψL	ARE	Ш	ШШ	Ш
Prof.		(-) Lif		m ³	p'vo kg/cm²	Cu kg/cm²	OCR (-)	Eu50 kg/c	Eu25 m²	Mo kg/cm²	Dr %	ø1s (9	ø2s (°)	ø3s (°)	ø4s (°)	ødm (°)	ømy (°)	Amax/g (-)	E'50 kg/cn		Vlo I²
0,20 0,40 0,60	Ē	- ?? - ??	?? 1,	85 85 85	0,04 0,07 0,11	Ξ	=	=	=	23	=	-		1	1	2	-	1	=		:
0,80 1,00 1,20		- ?1 12 2/ 18 2/	?? 1, /// 1,	85 85 85	0,15 0,19 0,22	0,67 0,72	31,2 27,5	113 123	170 184	50 54		-	-	## ##	-	-	32		-	=	
1,40 1,60	18 13	16 2/ 15 2/	/// 1, /// 1,	85 85	0,26	0,75	23,7 15,3	128 103	191 154	56 47	<u></u>		10.		=	-	=				2
1,80 2,00 2,20	12 1 11 2	18 2/ 18 2/ 21 2/	/// 1, /// 1,	85 85 85	0,33 0,37 0,41	0,57 0,57 0,54	12,3 10,8 8,9	97 97 96	146 146 145	45 45 42	2	-	Ξ.	_	=	-	=	Ξ	-	<u> </u>	
2,40 2,60 2,80	12 2	21 2/ 22 2/ 22 2/	/// 1,	85 85 85	0,44 0,48 0,52	0,64 0,57 0,57	9,8 7,8 7,1	108 116 129	163 175 194	48 45 45	=	-	_	_	-	-	-	=	=======================================	2	=
3,00 3,20 3,40	12 2 13 1	20 2/ 18 2/ 18 2/	/// 1.	85 85 85	0,55 0,59 0,63	0,57 0,60 0,70	6,5 6,4 7,1	143 153 157	214 230 235	45 47 52	=		Ξ.	Ξ	=	Ξ	5	**	=	- 52	-
3,60 3,80	19 2 21 2	26 2/ ₂ 20 4/ ₂	/// 1, :/: 1,	85 85	0,67	0,78 0,82	7,6 7,7	162 171	244 256	58 63	27	32	34	37	40	30	27	0,052	35	53	 63
4,00 4,20 4,40	16 1 16 2	20 2/1 18 2/1 22 2/1	/// 1,	85 85 85	0,74 0,78 0,81	0,78 0,70 0,70	6,7 5,5 5,2	189 211 224	284 316 335	58 52 52	=	-	=	=	=	Ξ	=	I	1		<u>-</u>
4,60 4,80 5,00	5 2	30 4/: 25 2// 22 2//	/// 1. /// 1.	85 85 85	0,85 0,89 0,93	0,57 0,25 0,30	3,8 1,3 1,5	240 148 175	359 222 262	45 25 29	3	28	32	35	38	26	26	0,008	20	30	36
5,20 5,40 5,60	7 2	21 2/i 21 2/i 26 2/i	/// 1,	85 85 85	0,96 1,00 1,04	0,35 0,35 0,35	1,8	200 201 202	300 302 304	32 32 32	=	=	-	=	=	=	=	Ξ	10	Ē	=
5,80 6,00 6,20	6 2	22 2// 30 4/: 30 4/:	/// 1,3 :/: 1,3	85 85 85	1,07 1,11 1,15	0,30 0,35 0,40	1,6 1,3 1,5 1,7	177 204 230	266 307 345	29 32 35	Ξ	28 28	31 31	35 35	38 38	25 25	26	-	12		21
6,40 6,60	7 4	42 4/: 30 4/:	/: 1,: /: 1,:	85 85	1,18 1,22 1,26	0,35 0,20 0,20	0,7	206 120	309 180	32 20	Ξ.	28 28	31 31	35 35	38 38	25 25	26 26 25	=	13 12 7	18 10	24 21 12
6,80 7,00 7,20	3 3	30 4/: 30 4/: 30 4/:	/: 1,i	85	1,30	0,15	0,6 0,4 0,6	120 90 120	180 135 180	20 15 20	Ξ	28 28 28	31 31 31	35 35 35	38 38 38	25 25 25	25 25 25	7	7 5 7	8	12 9 12
7,40 7,60 7,80	3 2 12 1	15 1* 22 2// 16 2//	/// 1,1 /// 1,1	85	1,37 1,41 1,44	0,10 0,15 0,57	0,2 0,4 2,0	13 90 321	20 135 481	3 15 45	=	-	Ξ	Ξ	-	=		Ξ	-		-
8,00 8,20 8,40	19 7 20 3 37 13 7 2	71 4/: 33 4/: 39 3::	/: 1,0 /: 1,0	85	1,48 1,52 1,55	0,78	2,8 2,8	395 406	592 609	58 60	5 7 27	29 29 32	32 32 34	35 35 37	38 39 40	26 26 29	27 27 30	0,013 0,015 0,052	32 33 62	50	57 60 11
8,60 8,80 9,00	15 3	21 2// 37 4/: 25 2//	// 1,8 /: 1,8	85 85	1,59 1,63 1,66	0,35 0,67 0,25	0,9 2,1 0,6	210 371 150	315 557 225	32 50 25	1	28	31	35	38	25	27	(2	25		45
9,20 9,40 9,60	5 2 5 2	25 2// 25 2// 19 2//	/// 1,8 /// 1,8	85 85	1,70 1,74 1,78	0,25	0,6	150 150	225 225 225 225	25 25 25	2	-			2	=	-	100	Ξ		:-
9,80	6 1	15 1** 30 4/:	** 1,8 /: 1,8	85 85	1,81	0,25 0,30 0,30	0,5 0,7 0,6	150 39 180	59 270	9 29	= =	28	31	35	38	25	26		10	15	 18
10,20 10,40 10,60	5 1 5 1	26 2// 19 2// 19 2//	/// 1,8 /// 1,8	85 85	1,89 1,92 1,96	0,35 0,25 0,25	0,8 0,5 0,5	210 150 150	315 225 225	32 25 25 25	=	=	57		Ē	=	=	2	=	-	-
10,80 11,00 11,20	5 1	19 2// 19 2// 37 4/:	1,8	35	2,00 2,03 2,07	0,25 0,25 0,25	0,5 0,5 0,4	150 150 150	225 225 225	25 25 25	-2	28	31	35	38	25	25		8	13	 15
11,40 11,60 11,80	10 1 5 1	19 2// 19 2// 24 2//	1,8	85 85	2,11 2,15 2,18	0,50 0,25 0,40	1,0 0,4 0,8	299 150 240	449 225 360	40 25 35	12	726 201	72	7113 1001	2	-		122		2	
12,00 12,20 12,40	7 2	26 2// 26 2// 22 2//	// 1,8 // 1,8	85 85	2,22 2,26 2,29	0,35	0,6	210 210	315 315	32 32 29	12			220			-	355	-	-	<u>-</u>
12,60 12,80	6 2 15 3	22 2//	// 1,8 /: 1,8	35 35	2,33	0,30 0,30 0,67	0,5 0,5 1,3	180 180 394	270 270 591	29 50	12	28	31	35	38	25	27		25		 45
13,00 13,20 13,40	11 2	45 4/: 27 2//	/: 1,8 // 1,8	35 35	2,40 2,44 2,48	0,57 0,54	1,0	343 322	514 483	45 42	8	29 28	32 31	35 35 	39 38	25 25	29 26	0,017	48 20		37 36—
13,60 13,80 14,00	7	27 2// 9 1** 28 4/:	1,8	35	2,52 2,55 2,59	0,45 0,35 0,89	0,7 0,5 1,6	270 46 513	405 68 769	38 11 72	=	28	31	35	38	25	28	31	40	60	 72
14,20 14,40 14,60	35 5	25 2// 58 3:: 32 3::	// 1,8 :: 1,8	35 35		0,50	0,8	300	450	40	12 11	30 29	33 33	36	39 39	26	29	0,024 0,022	58	88 10	 05 02
14,80 15,00 15,20	23 3 37 4	34 3:: 13 3::	:: 1,8 :: 1,8	35 35	2,74		-	Ξ	-	Ξ	13	28 30	31 33 32	36 35 36	38 39	25 25 26	29 28 30 29 27	0,025	57 38 62 53 35 65	58 (93 1	59 11
15,40 15,60	21 3 39 4	31 3:: 12 3::	:: 1,8 :: 1,8	35 35	2,81 2,85 2,89	=	=	=	-	=	8 14	29 28 30	31	35 35 36	39 38 39	25 25 26	30	0,017	35 65	53 (96 33 17
15,80 16,00 16,20	23 1 48 4	10 2// 16 4/: 10 3::	/: 1,8	35	2,92 2,96 3,00	0,70 0,87	1,0 1,4	417 511	625 767	52 69	20	28 31	31 34	35 37	38 40	25 27	28 31 32	0,038	38 80	58 (
16,40 16,60 16,80	46 2 30 2	17 3:: 28 4/: 26 4/:	/: 1,8	35	3,03 3,07 3,11	1,53 1,00	2,6 1,5	798 582	1198 874	138 90	27 18 3	32 31 28	35 33 32	37 36 35	40 39 38	28 26	31	0,052 0,034 0,007	100 77 50	115 13	30 38 90
17,00 17,20 17,40	39 3	34 3:: 10 3::	:: 1,8 :: 1,8	35 35	3,14 3,18 3,22	-	=	=	=	=	12 29 34 17	28 30 32 33	33 32 33 35 35 33 31	36 37 38 36	39 40 41	25 25 28 29 26	29 30 32 32	0,023 0,057 0,065	65 110	98 1°	8 —
17,60 17.80	47 3 22 4	37 3:: 11 3::	:: 1,8 :: 1,8	35 35	3,26			=		-		30 28 30	33 31	35	39 38	25	31 28	0,033	125 78 37	118 14	11 36
18,00 18,20 18,40	18 1 48 5	16 3:: 11 2// 51 3::	// 1,8 :: 1,8	35	3,40	0,75	1,0	450	675	56	11 17	30	33 33 31	36 36 35	39 39 38	25 26 25	30 31 28	0,022	67 80	120 14	20 — 14
18,60 18,80 19,00	19 3 14 1	13 4/: 32 4/: 17 2//	/: 1,8 // 1,8	35 35	3,48 3,51	0,93 0,78 0,64	1,2 1,0 0,7	551 465 382	827 698 573	78 58 48	=	28 28 	31 31	35 35 	38 38 	25 25	28 27 		43 32	48	78 57
19,20 19,40 19,60	13 2 30 5 16 24	22 2// 50 3:: 40 4/:	// 1,8 :: 1,8	35 35	3,55 3,59	0,60	0,7	363 417	544 626	47	I	28 28	31 31	35 35	38 38	25 25	29 27		50 27	75 9	90
19,80 20,00	13 2	24 2// - 2//	// 1,8	35	3,66	0,60 0,64	0,8 0,7 0,7	363 382	544 573	52 47 48	24	N=	(7 <u>41</u> 1577	022 N#	2	-		-	-		

PROVA PENETROMETRICA STATICA LETTURE DI CAMPAGNA / VALORI DI RESISTENZA

CPT 5

2.0105-035

- committente :

- assist. cantiere:

- lavoro: - località : Costruzione Capannone

Bientina (PI) - Via Gofi di Pecora

- data :

30/07/1998

- quota inizio: - falda :

Piano Campagna 2,30 da quota inizio

prf	L1	L2	qc	fs	qc/fs	prf	L1	L2	qc	fs	qc/fs
m			Kg/cm²	Kg/cm ²	- 12	m		¥	Kg/cm ²	Kg/cm²	3
0,20			1000		and the	10,20	6,0	10,0	6,0	0,23	26,0
0,40		0		1000000		10,40	6,5	10,0	6,0	0,33	18,0
0,40		500.0000					0,5	10,0			18,0
0,60				0.00		10,60	6,0	11,0	6,0	0,33	
0,80	. 270		175	0,60	-	10,80	7,0	12,0	7,0	0,40	17,0
1,00	18,0	27,0	18,0	1,40	13,0	11,00	6,0	12,0	6,0	0,33	18,0
1,20	15,0	36,0	15,0	1,07	14,0	11,20	6,0	11,0	6,0	0,33	18,0
1,40	17,0	33,0	17,0	1,20	14,0	11,40	5,0	10,0	5,0	0,40	12,0
1,60	17,0	35,0	17,0	1,13	15,0	11,60	5,0	11,0	5,0	0,33	15,0
1,80	15,0	32,0	15,0	1,13	13,0	11,80	5,0	10,0	5,0	0,33	15,0
2,00	17,0	34,0	17,0	0,93	18,0	12,00	7,0	12,0	7,0	0,53	13,0
2,20	19,0	33,0	19,0	1,00	19,0	12,20	5,0	13,0	5,0	0,40	12,0
2,40	23,0	38,0	23,0	1,20	19,0	12,40	5,0	11,0	5,0	0,47	11,0
2,60	24,0	42,0	24,0	1,27	19,0	12,60	6,0	13,0	6,0	0,40	15,0
2,80	27,0	46,0	27,0	1,47	18,0	12,80	6,0	12,0	6,0	0,47	13,0
2,00	23,0	45,0	23,0	1,20	19,0	13,00	20,0	27,0	20,0	0,33	60,0
3,00	23,0	45,0	23,0	1,20		13,00	20,0	37,0			30,0
3,20	23,0	41,0	23,0	1,20	19,0	13,20	32,0		32,0	1,07	30,0
3,40	18,0	36,0	18,0	1,00	18,0	13,40	12,0	28,0	12,0	0,53	22,0
3,60	20,0	35,0	20,0	1,13	18,0	13,60	6,0	14,0	6,0	0,13	45,0
3,80	22,0	39,0	22,0	1,13	19,0	13,80	13,0	15,0	13,0	0,63	21,0
4,00	20,0	37,0	20,0	0,53	37,0	14,00	6,5	16,0	6,0	0,47	13,0
4,20	13,0	21,0	13,0	0,53	24,0	14,20	15,0	22,0	15,0	0,53	28,0
4,40	10,0	18,0	10,0	0,47	21,0	14,40	50,0	58,0	50,0	0,87	58,0
4,60	7,0	14,0	7,0	0,40	17,0	14,60	32,0	45,0	32,0	0,47	69,0
4,80	9,0	15,0	9,0	0,47	19,0	14,80	20,0	27,0	20,0	0,80	25,0
5,00	9,0	16,0	9,0	0,40	22,0	15,00	35,0	47,0	35,0	1,00	35,0
5,20	10,0	16,0	10,0	0,43	23,0	15,20	29,0	44,0	29.0	0,60	48,0
5,40	7,5	14,0	8,0	0,37	22,0	15,40	10,0	19,0	10,0	0,40	25,0
5,60	5,5	11,0	6,0	0,27	22,0	15,60	44,0	50,0	44,0	1,00	44,0
5,00	4,0	8,0	4,0	0,20		15,80	45,0	60,0	45,0	0,73	61,0
5,80	4,0	0,0	4,0	0,20	20,0		45,0	47,0	36,0	0,73	42,0
6,00	4,0	7,0	4,0	0,40	10,0	16,00	36,0			0,87	42,0
6,20	7,0	13,0	7,0	0,33	21,0	16,20	37,0	50,0	37,0	0,53	69,0
6,40	4,0	9,0	4,0	0,33	12,0	16,40	30,0	38,0	30,0	0,80	37,0
6,60	5,0	10,0	5,0	0,27	19,0	16,60	20,0	32,0	20,0	0,67	30,0
6,80	4,0	8,0	4,0	0,13	30,0	16,80	36,0	46,0	36,0	1,60	22,0
7,00 7,20	5,0	7,0	5,0	0,13	37,0	17,00	16,0	40,0	16,0	0,67	24,0
7,20	8,0	10,0	8,0	0,93	9.0	17,20	39,0	49,0	39,0	0,67	58,0
7,40	20,0	34,0	20,0	0,40	50,0	17,40	18,0	28,0	18,0	0,87	21,0
7,60	6,0	12,0	6,0	0,20	30,0	17,60	10,0	23,0	10,0	1,27	8,0
7,80	13,0	16,0	13,0	0,13	97,0	17,80	15,0	34,0	15,0	1,27	12,0
8.00	18,0	20,0	18,0	0,80	22,0	18,00	27,0	46,0	27,0	0,80	34,0
8,00 8,20	25,0	37,0	25,0	0,93	27,0	18,20	20,0	32,0	20,0	0,73	27,0
8,40	23,0	36,0	22,0	0,80	27,0	18,40	27,0	38,0	27.0	0,73	37,0
0,40	22,0	43,0	24,0	0,00				26,0	15,0		28,0
8,60	31,0		31,0	0,73	42,0	18,60	15,0	20,0		0,53	45.0
8,80	19,0	30,0	19,0	1,07	18,0	18,80	8,0	16,0	8,0	0,53	15,0
9,00	11,0	27,0	11,0	0,67	16,0	19,00	6,0	14,0	6,0	0,40	15,0
9,20	8,0	18,0	8,0	0,33	24,0	19,20	7,0	13,0	7,0	0,47	15,0
9,40	7,0	12,0	7,0	0,33	21,0	19,40	8,0	15,0	8,0	0,47	17,0
9,60	5,0	10,0	5,0	0,33	15,0	19,60	12,0	19,0	12,0	0,40	30,0
9,80	5,0	10,0	5,0	0,33	15,0	19,80	7,0	13,0	7,0	0,33	21,0
10,00	5,0	10,0	5,0	0,27	19,0	20,00	8,0	13,0	8,0		

PENETROMETRO STATICO tipo da 16 t - (senza anello allargatore) COSTANTE DI TRASFORMAZIONE Ct = 10 - Velocità avanzamento punta 2 cm/s
 punta meccanica tipo Begemann ø = 35.7 mm (area punta 10 cm² - apertura 60°)

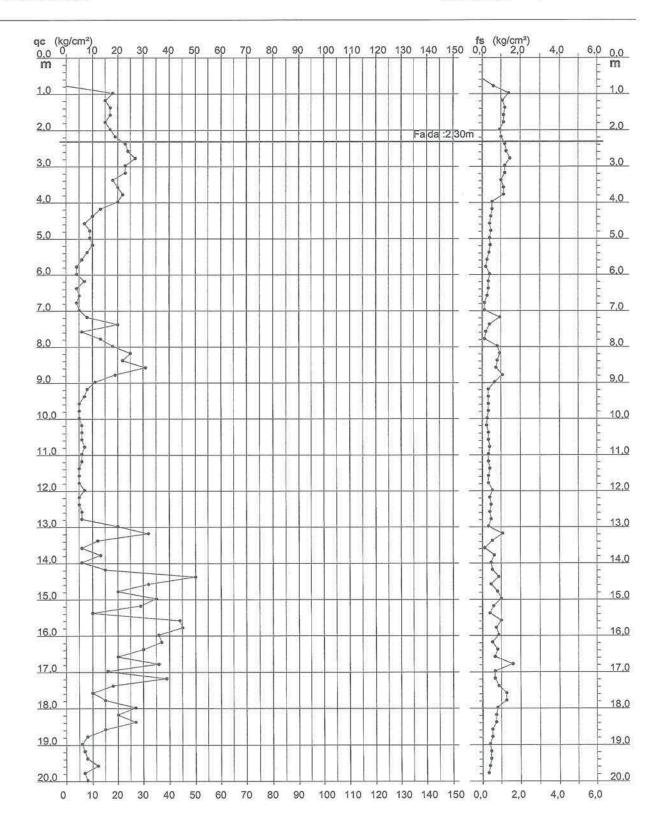
⁻ manicotto laterale (superficie 150 cm²)

CPT 5

2.0105-035

- committente :

lavoro :località :


Costruzione Capannone

Bientina (PI) - Via Gofi di Pecora

- assist, cantiere :

- data :

- quota inizio : - falda : 30/07/1998 Piano Campagna 2,30 da quota inizio

PROVA PENETROMETRICA STATICA VALUTAZIONI LITOLOGICHE

CPT 5

2.0105-035

- committente :

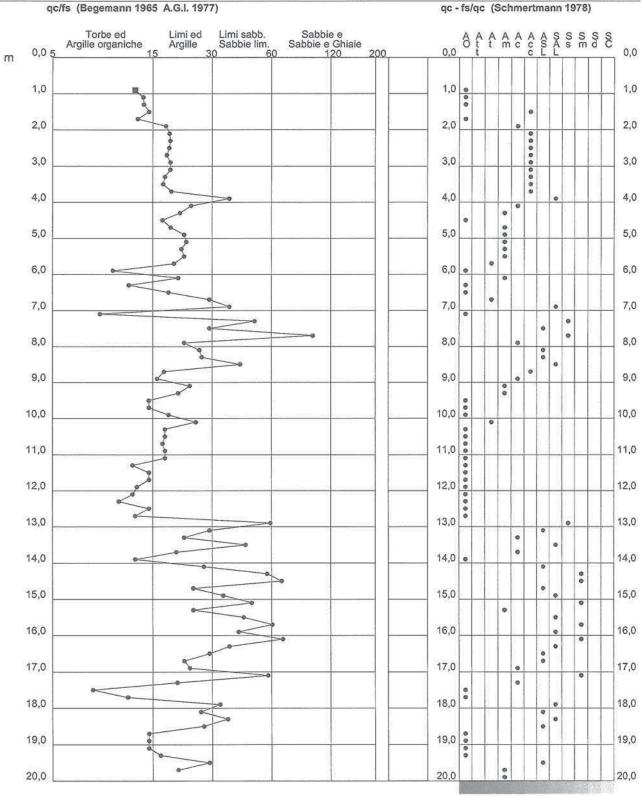
lavoro :località :

Costruzione Capannone

Bientina (PI) - Via Gofi di Pecora

- assist. cantiere :

- data :


30/07/1998

quota inizio :falda :

Piano Campagna 2,30 da quota inizio

- data emiss. :

.....

CPT 5

2.0105-035

- committente :

- lavoro : - località : Costruzione Capannone

Bientina (PI) - Via Gofi di Pecora

- assist. cantiere :

- data :

- quota inizio: - falda :

30/07/1998 Piano Campagna 2,30 da quota inizio

						INA	TURA	COE	sivia	ПП	ПШ	ШП	ПП	NAT	JRA	GRA	Nul	ARE	Ш	
Prof.	qc q kg/cm²	(-)	Natura Litol.	Y' t/m²	p'vo kg/cm²	Cu kg/cm²	OCR (-)	Eu50 kg/c	Eu25	Mo kg/cm²	Dr %	ø1s (9	ø2s (°)	ø3s (9	ø4s (°)	ødm (°)	15.10.00	Amax/g (-)	E'50 kg/cn	E'25 Mo 1 ² kg/cm ²
0,20 0,40 0,60			??? ??? ???	1,85 1,85 1,85	0,04 0,07 0,11	-	Ē	-		=	-		Ī	=	- 0	2		Ξ	2	2 0
0,80 1,00 1,20	18 15	13	??? 2//// 2////	1,85 1,85 1,85	0,15 0,19 0,22	0,75	36,1	128	191	56	Ξ	-	\25 \25		12	=	2	-		= =_
1,40 1,60 1,80	17 17 15	14 15 13	2////	1,85 1,85 1,85	0,26 0,30 0,33	0,67 0,72 0,72 0,67	24,8 22,7 19,2 15,0	113 123 123 113	170 184 184 170	50 54 54 50	=	=	2	=	2	=	=		=	= =
2,00 2,20 2,40	17 19 23	18 19 19	2/// 2//// 4/:/:	1,85 1,85 0,94	0,37 0,41 0,43	0,72 0,78 0,87	14,5 14,1 15,3	123 132 148	184 198 221	54 58 69	42	34	36		41	34	-	0.005		
2,60 2,80 3,00	24 27	19 18 19	4/:/: 4/:/: 4/:/:	0,94 0,95 0,94	0,44 0,46 0,48	0,89 0,95 0,87	14,9 15,3 13,1	151 161 148	227 242 221	72 81 69	43 46 39	34 34 33	36 37 36	39 39 39 38	41 42 41	34 34 33	28 28 28 28	0,085 0,086 0,093 0,078	38 40 45 38	58 69 60 72 68 81 58 69
3,20 3,40 3,60	23 23 18 20	19 18 18	4/:/: 2//// 4/:/:	0,94 0,98 0,93	0,50 0,52 0,54	0,87 0,75 0,80	12,5 9,9 10,3	148 128 136	221 191 204	69 56 60	38 32	33	36 35	38	41	33	28	0,076	38	58 69 — 50 60
3,80 4,00 4,20	22 20 13	19 37 24	4/:/: 4/:/: 2////	0,93 0,93 0,93	0,56 0,58 0,59	0,85 0,80 0,60	10,6 9,5 6,4	144 138 154	216 207 231	66 60 47	34 30	33 32	35 35	38 38	41	32 31	28 27	0,067	37 33	55 66 50 60
4,40 4,60 4,80	10 7 9	21 17 19	2/// 2//// 2////	0,90 0,84 0,88	0,61 0,63 0,65	0,50 0,35 0,45	4,9 3,0 4,0	170 172 181	255 258 271	40 32 38	=	=	=		Ξ	=	=	-	=	= =
5,00 5,20 5,40	8	22 23 22	2//// 2//// 2////	0,88 0,90 0,86	0,66 0,68 0,70	0,45 0,50 0,40	3,9 4,3 3,1	187 191 193	280 286 290	38 40 35	Ē	=	Ξ	=	=	=	-	=	Ξ.	= =
5,60 5,80 6,00 6,20	4	22 20 10	2////	0,82 0,78 0,46	0,72 0,73 0,74	0,30 0,20 0,20	2,1 1,2 1,2	166 119 26	249 178 39	29 20 6	Ξ	=	2	-	=	=	=	:	=	= =_
6,40 6,60 6,80	5	21 12 19 30	2//// 1*** 2//// 4/:/:	0,84 0,46 0,80 0,80	0,76 0,77 0,78 0,80	0,35 0,20 0,25 0,20	2,4 1,2 1,5	188 26 146	282 39 219	32 6 25	5		=	=				-	Ξ	= =
7,00 7,20 7,40	5 8	37 9 50	4/:/; 2//// 4/:/:	0,81 0,86 0,93	0,82 0,83 0,85	0,25 0,40 0,80	1,1 1,4 2,5 5,8	119 146 212 227	179 220 318 341	20 25 35 60	21	28 28 31	31 31 34	35 35 37	38 38 40	25 25 29	25 25 27	0,039	7 8 33	10 12 13 15 50 60
7,60 7,80 8.00	13	30 97	4/:/: 4/:/: 2////	0,82 0,88 0,98	0,87 0,88 0,90	0,30 0,60 0,75	1,7 3,9 5,0	173 248 250	259 372 375	29 47 56	5	28 29	31 32	35 35	38 38	25 26	26 26	0,012	10	15 18 33 39
8,20 8,40 8,60	25 22 31	27 27 42	4/:/: 4/:/: 3::::	0,94 0,93 0,88	0,92 0,94 0,96	0,91 0,85	6,2 5,5	242 255	364 383	75 66	26 21 33	32 31 33	34 34 35	37 37 38	40 40 41	30 29 31	28 28 29	0,050 0,041 0,064	42 37 52	63 75 55 66 78 93
9,00 9,20	11	16 24	2//// 2//// 2////	0,99 0,91 0,86	0,98 1,00 1,01	0,78 0,54 0,40	4,7 2,9 2,0	272 269 225	409 404 337	58 42 35	## ##	Ξ	=	=	Ξ	-	-	-	Ξ	I I_
9,40 9,60 9,80	5		2////	0,84 0,46 0,46	1,03 1,04 1,05	0,35 0,25 0,25	1,6 1,1 1,0	202 32 32	304 49 49	32 8 8	-	Ξ.	Ξ.	=	Ξ	120	Ξ	-	5	
10,00 10,20 10,40 10,60	6	26 18	2/// 2/// 2//// 2////	0,80 0,82 0,82 0,82	1,07 1,08 1,10 1,12	0,25 0,30 0,30 0,30	1,0 1,3 1,2 1,2	150 178 178 178	225 266 267 267	25 29 29	= =	2	<u></u>	2	2		26	=	-	= :-
10,80 11,00 11,20	7	17 18	21111	0,84 0,82 0,82	1,13 1,15 1,16	0,35 0,30 0,30	1,4 1,2 1,2	205 179 179	307 268 268	29 32 29 29	Ξ	3	=	2		=		Ξ	Ī	
11,40 11,60 11,80	5	12 15 15	1***	0,46 0,46 0,46	1,17 1,18 1,19	0,25 0,25 0,25	0,9 0,9 0,9	33 33 33	49 49 49	8 8	:	=	Ξ.	=	-	2		# #	=	
12,00 12,20 12,40	5	12 11	1***	0,46 0,46 0,46	1,20 1,21 1,22	0,35 0,25 0,25	1,3 0,9 0,9	45 33 33	67 49 49	11 8 8	=	=		II.		2	2	11	<u></u>	
12,60 12,80 13,00	6 20	13 60	1*** 1*** 4/:/:	0,46 0,46 0,93	1,23 1,24 1,26	0,30 0,30 0,80	1,1 1,1 3,6	39 39 355	58 58 532	9 60	11	30	33	36	39	27	27	0,022	33	50 60
13,20 13,40 13,60 13,80	12 6	22 45	4/:/: 2//// 4/:/: 2////	0,97 0,92 0,82 0,93	1,28 1,29 1,31	1,07 0,57 0,30 0,60	5,0 2,3 1,0	352 312 180	528 467 270	96 45 29	27 	32 28	34	37 35	40 38	29 25	29 26	0,051	53 10	80 96
14,00 14,20 14,40	6 15	13 28	1*** 2//// 3::::	0,46 0,95 0,92	1,33 1,34 1,36 1,38	0,30 0,67	2,3 1,0 2,6	327 39 350	490 59 525	47 9 50	40	- - 34	36	39	41			0,081	-	125 150
14,60	32 20 35	69 25 35	3:::: 4/:/: 3::::	0,88 0,93 0,89	1,39 1,41 1,43	0,80	3,1	389	584	60	25 8 27	31 29 32	34 32 35 34	37 35 37 37	40 39 40 40	31 29 26 29	31 29 27 29 29	0,047	83 53 33 58 48	125 150 80 96 50 60 88 105 73 87
15,00 15,20 15,40 15,60	44	48 25 44	3:::: 2//// 3::::	0,87 0,90 0,91	1,45 1,47 1,48	0,50	1,6	289	433	40	20 34	31	**	38	40	28	29 31	0,052 0,039	***	110 132
15,80 16,00 16.20	36 37	42 69	3:::: 3:::: 3::::	0,91 0,89 0,89	1,50 1,52 1,54	=	=		=	-	35 27 27	33 33 32 32	35 35 34 35 34 32	38 37 37 37	41 40 40 40	30 29 29 28	31 30 30	0,068 0,051 0,052	73 75 60 62	113 135 90 108 93 111
16,40 16,60 16,80	30 20 36	37 30 22	3:::: 4/:/: 4/:/:	0,88 0,93 0,99	1,55 1,57 1,59 1,61	0,80 1,20 0,70	2,7 4,4 2,2	413 445	620 667	60 108	20 6 26	31 29 32	34 32 34	35 37	38 40	28 25 29	29 27 30	0,038 0,013 0,049	50 33 60	75 90 50 60 90 108
17,00 17,20 17,40 17,60	39 18	58 21	2//// 3:::: 2////	0,96 0,90 0,98	1,63	0.75	2,2 2,3 1,4	382 405	608	52 56	28	32	35	37	40	29	30	0,053	65	98 117 —
17,60 17,80 18,00 18,20	27	12 34	2//// 2//// 3:::: 4/:/:	0,90 0,95 0,87 0,93	1,67 1,69 1,70 1,72 1,74	0,50	2,0	294 374 429	441 562 643	40 50	14	30	33 32 33	36	39	27	28	0,027	45	68 81
18,40 18,60 18,80	27 15	37 28	3::::	0,93 0,87 0,95 0,86	1,74 1,76 1,78	0,80 0,67 0,40	2,4 1,9 1.0	378 240	567 360	50 35	13	28 30 	33	35 36 	38 39 	25 27 —	27 28 	0,009	33 45 	50 60 68 81
19,00 19,20 19,40	6 7 8	15 15	1***	0,46 0,46 0,86	1,79 1,79 1,79 1,81	0,30 0,35 0,40	1,0 0,7 0,8 1,0	39 46 240	59 68 360	9 11 35	=	Ξ	Ξ	=	-	=	=			= =
19,60 19,80 20,00	12	30 21	4/:/: 2////	0,88 0,84 0,86	1,83 1,85 1,86	0,57 0,35 0,40	1,5 0,8 0,9	334 210 240	501 315 360	45 32 35	-	28	31	35	38	25	26	<u>50</u>	20	30 36

PROVA PENETROMETRICA STATICA LETTURE DI CAMPAGNA / VALORI DI RESISTENZA

CPT 6

2.0105-035

- committente :

- assist. cantiere :

- lavoro: - località : Costruzione Capannone

Bientina (PI) - Via Gofi di Pecora

- data:

- quota inizio:

13/08/1998 Piano Campagna Falda non rilevata

- falda : - data emiss. :

prf	L1	L2	qc	fs	qc/fs	prf	L1	L2	qc	fs	qc/fs
m			Kg/cm ²	Kg/cm ²		m	: * :	991	Kg/cm ²	Kg/cm ²	1.00
0,20	****					10,20	22,0	33,0	22,0	0.20	110,0
0,40		-	-	2000000		10,40	31,0	34,0	31,0	0,67	46,0
0,60		100 23 000	***			10,60	26,0	36,0	26,0		
0,80		5200		0,27			20,0			0,80	32,0
4.00	23,0	27.0	22.0	0,27	05.0	10,80	22,0	34,0	22,0	1,13	19,0
1,00		27,0	23,0	0,93	25,0	11,00	26,0	43,0	26,0	0,60	43,0
1,20	23,0	37,0	23,0	1,47	16,0	11,20	25,0	34,0	25,0	1,40	18,0
1,40	23,0	45,0	23,0	1,40	16,0	11,40	22,0	43,0	22,0	0,87	25,0
1,60	21,0	42,0	21,0	1,73	12,0	11,60	28,0	41,0	28,0	1,07	26,0
1,80	15,0	41,0	15,0	1,27	12,0	11,80	57,0	73,0	57,0	1,40	41,0
2,00	11,0	30,0	11,0	1,13	10,0	12,00	33,0	54,0	33,0	1,20	27,0
2,20	14,0	31,0	14,0	0,93	15,0	12,20	25,0	43,0	25,0	0,93	27,0
2,40	15,0	29,0	15,0	0,93	16,0	12,40	24,0	38,0	24,0	0,87	28,0
2,60	14,0	28,0	14,0	0,93	15,0	12,60	21,0	34,0	21,0	0,87	24,0
2,80	16,0	30,0	16,0	0,73	22,0	12,80	25,0	38,0	25,0	0,87	29,0
3,00	17,0	28,0	17,0	1,00	17,0	13,00	32,0	45,0	32,0		
3,20	17,0	32,0	17,0	1,00					32,0	0,80	40,0
		30,0	17,0	0.00	17,0	13,20	34,0	46,0	34,0	0,67	51,0
3,40	15,0	30,0	15,0	0,80	19,0	13,40	37,0	47,0	37,0	1,20	31,0
3,60	14,0	26,0	14,0	0,67	21,0	13,60	24,0	42,0	24,0	0,67	36,0
3,80	12,0	22,0	12,0	0,67	18,0	13,80	25,0	35,0	25,0	0,93	27,0
4,00	11,0	21,0	11,0	0,40	27,0	14,00	19,0	33,0	19,0	0,40	47,0
4,20	12,0	18,0	12,0	0,60	20,0	14,20	30,0	36,0	30,0	0,67	45,0
4,40	11,0	20,0	11,0	0,53	21,0	14,40	16,0	26,0	16,0	0,60	27,0
4,60	9,0	17,0	9,0	0,40	22,0	14,60	21,0	30,0	21,0	1,20	17,0
4,80	11,0	17,0	11,0	0,53	21,0	14,80	26,0	44,0	26,0	0,60	43,0
5,00	12,0	20,0	12,0	0.53	22,0	15,00	29,0	38,0	29,0	0,60	48,0
5,20	13,0	21,0	13,0	0,87	15,0	15,20	28,0	37,0	28,0	0,53	52,0
5,40	15,0	28,0	15,0	0,73	20,0	15,40	27,0	35,0	27,0	0,33	81,0
5,60	17,0	28,0	17,0	0,80	21,0	15,60	8,0	13,0	8,0	0,20	40.0
5,80	16,0	28,0	16,0	0,67	24,0	15,80	6,0	9,0			
6,00	13,0	23,0	13,0	0,67	19,0			9,0	6,0	0,27	22,0
6,20	10,0	20,0	10,0		19,0	16,00	6,0	10,0	6,0	0,20	30,0
6.40			10,0	0,40	25,0	16,20	6,0	9,0	6,0	0,27	22,0
6,40	5,0	11,0	5,0	0,27	19,0	16,40	5,0	9,0	5,0	0,20	25,0
6,60	5,0	9,0	5,0	0,20	25,0	16,60	10,0	13,0	10,0	0,53	19,0
6,80	8,0	11,0	8,0	0,20	40,0	16,80	7,0	15,0	7,0	0,47	15,0
7,00	9,0	12,0	9,0	0,33	27,0	17,00	9,0	16,0	9,0	0,60	15,0
7,20	4,0	9,0	4,0	0,20	20,0	17,20	9,0	18,0	9,0	0,67	13,0
7,40	9,0	12,0	9,0	0,20	45,0	17,40	40,0	50,0	40,0	0,53	75,0
7,60	3,0	6,0	3,0	0,33	9,0	17,60	15,0	23,0	15,0	0.87	17,0
7,80	42,0	47,0	42,0	0,80	52,0	17,80	8,0	21,0	8,0	1,13	7,0
8,00	35,0	47,0	35,0	1,13	31,0	18,00	50,0	67,0	50,0	0,47	107,0
8,20	35,0	52,0	35,0	0,53	66,0	18,20	46,0	53,0	46,0	1,27	36,0
8,40	28,0	36,0	28,0	1,13	25,0	18,40	10,0	29,0	10,0	0,40	25,0
8,60	34,0	51,0	34,0	0,93	36,0	18,60	15,0	21,0	15,0	1,27	
8,80	25.0	39,0	25,0	0,87				21,0			12,0
9,00	37,0	50,0	27.0		29,0	18,80	13,0	32,0	13,0	0,73	18,0
0.20			37,0	0,80	46,0	19,00	13,0	24,0	13,0	0,40	32,0
9,20	22,0	34,0	22,0	0,73	30,0	19,20	14,0	20,0	14,0	0,40	35,0
9,40	22,0	33,0	22,0	0,87	25,0	19,40	7,0	13,0	7,0	0,27	26,0
9,60	23,0	36,0	23,0	0,80	29,0	19,60	8,0	12,0	8,0	0,33	24,0
9,80	23,0	35,0	23,0	0,40	57,0	19,80	8,0	13,0	8,0	0,33	24,0
10,00	21,0	27,0	21,0	0,73	29,0	20,00	8,0	13,0	8,0		

PENETROMETRO STATICO tipo da 16 t - (senza anello allargatore) COSTANTE DI TRASFORMAZIONE Ct = 10 - Velocità avanzamento punta 2 cm/s - punta meccanica tipo Begemann ø = 35.7 mm (area punta 10 cm² - apertura 60°) - manicotto laterale (superficie 150 cm²)

CPT 6

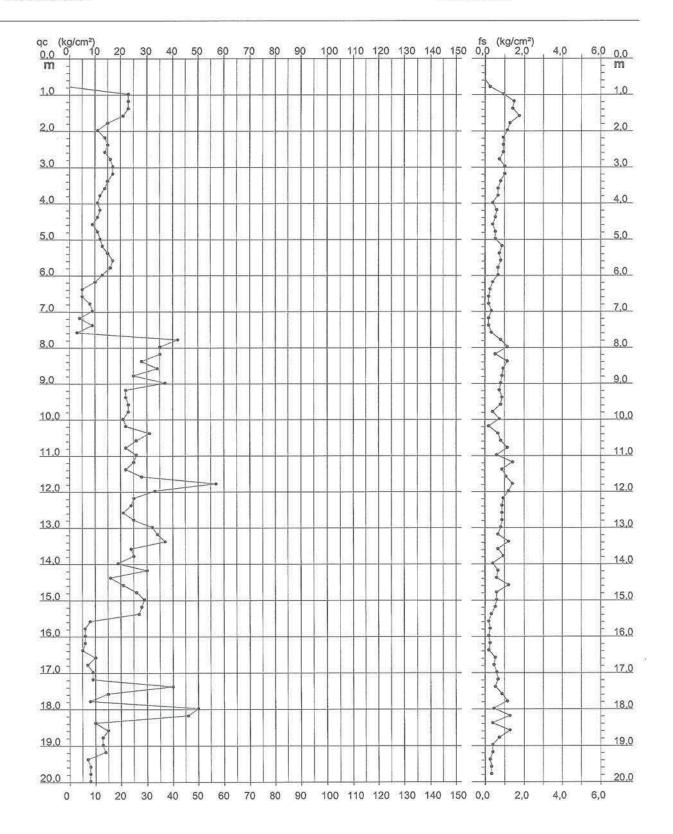
2.0105-035

- committente :

- lavoro : - località: Costruzione Capannone

Bientina (PI) - Via Gofi di Pecora

- assist. cantiere :


- data : - quota inizio:

- falda :

Piano Campagna

13/08/1998

PROVA PENETROMETRICA STATICA VALUTAZIONI LITOLOGICHE

CPT 6

2.0105-035

- committente :

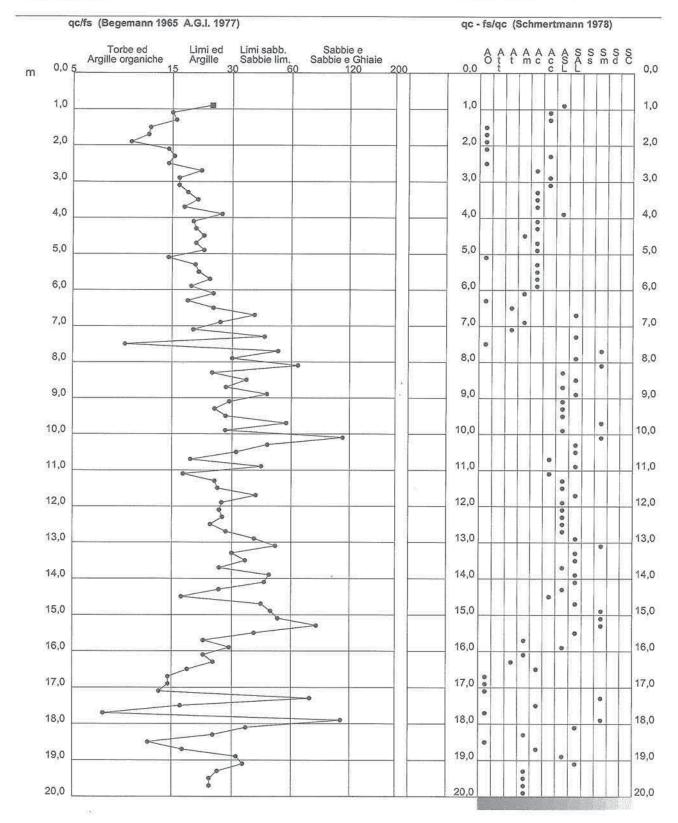
lavoro :località :

Costruzione Capannone

Bientina (PI) - Via Gofi di Pecora

- assist. cantiere :

- data :


13/08/1998

quota inizio :falda ;

Piano Campagna

- data emiss. :

Falda non rilevata

CPT 6

2.0105-035

- committente :

- lavoro : - località :

Costruzione Capannone Bientina (PI) - Via Gofi di Pecora

- assist. cantiere :

13/08/1998

- data : - quota inizio : - falda :

Piano Campagna

- data emiss. :

Falda non rilevata

							NAT	URA	¢oes	SIVA	ШШ		HIII	Ш	VAT	JRA	GRA	NUL	ARE	HII		
	Prof.	qc kg/cm²	qc/fs (-)	Natura Litol.	Y' t/m³	p'vo kg/cm²	Cu kg/cm²	OCR (-)	Eu50 kg/c	Eu25	Mo kg/cm²	Dr %	ø1s (9	ø2s (°)	ø3s (°)	ø4s (°)	ødn (°)	ømy (%	Amax/g (-)	E'50 kg/cr	E'25 n² kg/c	Mo m²
	0,20		=	??? ???	1,85 1,85	0,04		1				-		=	Ξ		1	=		-	••	
	0,60	-	=	777	1,85 1,85	0,11			12	=	=			-	1	-	=	-	Ξ	-	=	=
	1,00	23	25 16	4/:/: 4/:/:	1,85 1,85	0,19	0,87	43,3 34,5 28,5	148 148	221 221	69 69	63 58	37 36	39 38	41 40	43 43	38 37	28 28	0,138 0,126	38 38	58 58	69 —
	1,40 1,60 1,80	23 21 15	16 12 12	4/:/: 4/:/: 2///	1,85 1,85 1,85	0,26	0,87 0,82 0,67	28,5 22,6 15,0	148 140 113	221 210 170	69 63 50	54 48	36 35	38 37	40 39	42 42	36 35	28 27	0,115 0,099	38 35	58 53	69 63
8	2,00	11 14	10	2////	1,85 1,85	0,33 0,37 0,41	0,54	10,0	91 108	137 162	42 48	<u>}</u>		-	=		-	-	-	-	=	<u>:</u> —
	2,40	15 14	16 15	2///	1,85	0,44	0,67	10,4 8,9	113 114	170 171	50 48	-		-	-	722		-		=	=	••
13	2,80 3,00 3,20	16 17 17	17 17	2/// 2//// 2////	1,85 1,85 1,85	0,52 0,55 0,59	0,70 0,72 0,72	9,1 8,7 8,1	123 131 142	184 197 213	52 54 54	-			-	=		=		=		
	3,40	15 14	19	2///	1,85	0,63	0,67	6,8 5,9	160 177	240 265	50 48	-		=	2			3	1	=	=	=
	3,80 4,00	12	18 27	2///	1,85 1,85	0,70	0,57	4,8	195 207	292 310	45 42	-	2	7	-	2	-	3		7	-	=
	4,20 4,40 4,60	12 11 9	20 21 22	2/// 2//// 2////	1,85 1,85 1,85	0,78 0,81 0,85	0,57 0,54 0.45	4,3 3,7 2,8	217 230 228	326 344 342	45 42 38	2	=	=	2	-	**	57	7.207	-		70
	4,80 5,00	11 12	21	2///	1,85	0,89	0,45 0,54 0,57	3,3	249 260	374 391	42 45	2		-	-	2	-	257	2	-	-	25
	5,20 5,40	13 15 17	15 20	2///	1,85	1,00	0,60	3,5 3,8	271 281	407	47 50			7	-		-	# 1 # 2	-	-	-	1217 - 10 15
	5,60 5,80 6,00	16 13	21 24 19	21111 21111 21111	1,85 1,85 1,85	1,04 1,07 1,11	0,72 0,70 0,60	4,0 3,7 2,9	289 303 301	433 454 452	54 52 47	-	-		=	=	-	=	-	-		
	6,20	10	25 19	2///	1,85	1,15	0,50	2,2	274 150	411 225	40 25		25		:		2		=	:	*	=
	6,60 6,80 7,00	5 8 9	25 40 27	2/// 4/:/: 2////	1,85 1,85 1,85	1,22 1,26 1,30 1,33 1,37	0,25 0,40 0,45	0,9 1,5 1,7	150 233 259	225 350 389	25 35 38	1	28	31	35	38	25	26		13	20	24
	7,00 7,20 7,40	9 3	20 45	2////	1,85 1,85	1,33	0,20	0,6	120 261	180	20 38	=	28	31	35	38	25	26	=	15	23	
	7,60 7,80	42	9 52	3::::	1,85 1,85	1,41	0,15	0,4	20	29	5	33	-	35	38	41	30	30	0,065	70	105	126
2	8,00 8,20 8,40	35 35 28	31 66 25	3:::: 3:::: 4/:/:	1,85 1,85 1,85	1,48 1,52 1,55	0,97	3,5	438	657	84	26 26 17	33 32 32 30	34 34 33	37 37 36	40 40 39	29 29 27	29 29 28	0,050 0,049 0,033	58 58		105 105 84
	8,60	34 25	36 29	3:::: 4/:/:	1,85 1,85	1,59 1,63	0,91	3,0	446	669	75	24 12	31 30	34 33	37 36 37	40 39	28 27	29 28	0,045	47 57 42	85 63	102 75
	9,00 9,20 9,40	37 22	46 30 25	3:::: 4/:/:	1,85 1,85	1,66 1,70 1,74	0,85	2,6	441	662	66	25 7	32 29	34	35	40 39	29 26	30 28	0,048	62 37	93 55	111 —
	9,60	22 22 23 23	29 57	4/:/: 4/:/: 3::::	1,85 1,85 1,85	1,78 1,81	0,85	2,6	446 456	668 684	66 69	6 7 7	29 29 29	32 32 32	35 35 35	39 39 39	26 25 26 25	30 28 28 28 28 27 28 27 28 29 28	0,015 0,016 0,016	37 38 38	55 58 58	66 69 69
-	10,00	21	29 110	4/:/: 3::::	1,85 1,85	1,85 1,89	0,82	2,3	448	672	63	3 4	28 29	32 32	35 35	38 38	25	27 28	0,008	35 37	53 55	63 —
	10,40 10,60 10,80	31 26 22	46 32 19	3:::: 3:::: 4/:/:	1,85 1,85 1,85	1,92 1,96 2,00	0.85	21	467	701	 66	16 9 3	30 29 28	33 32 32	36 35	39 39	25 27 26	29 28 28	0,030	52 43	78 65 55	93 78
	11,00 11,20 11,40	26 25	43 18	3:::: 4/:/:	1,85 1,85	2,03	0,85	2,1	497	745	75	8 7	29 29	32 32	35 35 35	38 39 39	25 25 25	28	0,008 0,018 0,015	43 37 43 42	65 63	66 78 75—
	11,60	22 28	25 26	4/:/: 4/:/:	1,85 1,85	2,11	0,85 0,97	2,2 2,0 2,3	474 523	710 785	66 84	10	28 29	31 32	35 35	38 39	25 26	28 28 28 31	0,004	37 47	55 70	66 84
-	11,80 12,00 12,20	57 33 25	41 27 27	3:::: 4/:/: 4/:/:	1,85 1,85 1,85	2,18	1,10	2,6 2,0	575 508	862 763	99 75	34 14 4	33 30 29	35 33 32	38 36 35	41 39 38	29 26	31 29 28	0,065 0,028 0,011	95 55	143	99
	12,40 12,60	24 21 25	28 24	4/:/:	1,85 1,85	2,26 2,29 2,33	0,89	1,9 1,7	502 473	752 709	72 63	3	28 28	32 31	35 35	38 38	25 25 25 25	28 27 28	0,007	42 40 35	63 60 53	75 72 63
-	12,80	32	29 40	4/:/: 3::::	1,85	2,37	0,91	1,9	514	771	75	3 11	28 30	32 33	35 36	38 39	26	28 29	0,008	42 53	63 80	75 96
	13,20 13,40 13,60	34 37 24	51 31 36	3:::: 3:::: 3::::	1,85 1,85 1,85	2,44 2,48 2,52		_		=	1	13 16 0	30 30 28	33 33 31	36 36 35	39 39 38	26 26 25	29 29 30 28 28 27	0,026 0,030 0,001	57 62 40		102
	13,80	25 19	27 47	4/:/:	1,85 1,85	2,55	0,91 0,78	1,7	521 456	782 683	75 58	1	28 28	31 31	35 35	38 38	25 25	28 27	0,004	42 32	63 48	72 75 57
	14,20	30 16	45 27	3::::	1,85	2,63	0,70	1,2	414	621	52	7	29	32	35	39	25	29	0,016	50	75	90
	14,60 14,80 15,00	21 26 29	17 43 48	4/:/: 3:::: 3::::	1,85 1,85 1,85	2,70 2,74 2,77	0,82	1,4	483	724	63	1 5	28 28 29 28	31 31 32	35 35 35 35	38 38 38	25 25 25 25 25 25	27 28	0,003	35 43 48	53 65 73	63 78 87
-	15,20 15,40	29 28 27	52 81	3::::	1,85 1,85	2,81	100	=		=	=	3	28	31 32 32 31	35	38 38	25 25	28 29 28 28	0,011 0,008 0,004	43 48 47 45 13	65 73 70 68 20	84 — 81
	15,60 15,80	6	40 22	4/:/:	1,85	2,89	0,40 0,30 0,30 0,30	0,5	180	360 270	35 29 29	=	28	31	35	38	25	26	=	***	-	24
-	16,00 16,20 16,40	6 6 5	30 22 25	4/:/: 2//// 2////	1,85 1,85 1,85	2,96 3,00 3,03	0,30 0,30 0,25	0,4 0,4 0,3	180 180 150	270 270 225	29 29 25	2	28	31	35	38	25	26		10	15	18
	16,40 16,60 16,80 17,00	10 7 9	19	2////	1,85	3,07	0,50 0,35	0,6	300 46	450 68	40	2	223 223	**	-	-	<u> </u>	2	-	27		-
H	17,00	9	15 13	2////	1,85	3,14	0,45 0,45	0,6 0,5	270 270	405 405	38 38			**	**		-	-		-	=	<u></u>
	17,40 17,60 17,80	40 15 8	15 15 13 75 17	3:::: 2//// 2////	1,85 1,85 1,85	3,22 3,26 3,29	0,67	0,9 0,5	400 240	600 360	50 35	12	30	33	36	39	25	30	0,024	67	100 1	20
1	18,00	50 46	107 36 25	3::::	1,85	3,33	-	-	*	-	-	19 16	31 30	34 33	36 36	40 39	26 26	31 31	0,036	83 77		50 38
	18,40 18,60 18,80	10 15 13	25 12 18	2/// 2//// 2////	1,85	3,40 3,44 3,48	0,50	0,6 0,8 0,7	300 400	450 600	40 50	=		=	-	=	•	-	=		-	
-	19,00	13	32 35	41:1: 41:1:	1,85 1,85 1,85	3,51 3,55	0,60 0,60 0,64	0,7	363 363 382	544 544 573	47 47 48	-	28 28	31 31	35 35	38 38	25 25	26 26	Ξ	22 23	33 35	39 42
	19,40 19,60	14 7 8 8	26 24 24	2////	1,85	3,59	0,35	0,3	210 240	315 360	32 35		**	***	-	***	***		-		-	
1	19,80 20,00	8	24	2////	1,85 1,85	3,66 3,70	0,40	0,4	240 240	360 360	35 35		**	## C		**	=	**				

PROVA PENETROMETRICA STATICA LETTURE DI CAMPAGNA / VALORI DI RESISTENZA

CPT 7 2.0105-035

- committente :

- lavoro :

- località : - assist. cantiere : Costruzione Capannone

Bientina (PI) - Via Gofi di Pecora

- data :

- quota inizio : - falda :

13/08/1998 Piano Campagna

- data emiss. :

Falda non rilevata E . 135

prf	L1	L2	qc	fs	qc/fs	prf	L1	L2	qc	fs	qc/fs
m			Kg/cm ²	Kg/cm ²		m	17/1	352	Kg/cm ²	Kg/cm ²	:X:
0,20	-	****	**			10,20	5,0	9,0	5,0	0,33	15,0
0,40		Comme	-	ILMANGARICY		10,40	5,0	10,0	5,0	0,33	15,0
0,60	V20223	602/02/0	22	2000000		10,60	6,0	11,0	6,0	0,33	16,0
0,80	-	0.07		1,07		10,80	6,5				
1,00	14,0	30,0	14,0	1,00			7.0	12,0	6,0	0,33	18,0
1,00		30,0			14,0	11,00	7,0	12,0	7,0	0,37	19,0
1,20	18,0	33,0	18,0	0,80	22,0	11,20	6,5	12,0	6,0	0,37	16,0
1,40	15,0	27,0	15,0	0,80	19,0	11,40	5,5	11,0	6,0	0,33	18,0
1,60	15,0	27,0	15,0	0,80	19,0	11,60	6,0	11,0	6,0	0,27	22,0
1,80	13,0	25,0	13,0	0,47	28,0	11,80	7,0	11,0	7,0	0,33	21,0
2,00	15,0	22,0	15,0	0,60	25,0	12,00	8,0	13,0	8,0	0,33	24,0
2,20	14,0	23,0	14,0	0,60	23,0	12,20	8,0	13,0	8,0	0,57	14,0
2,40	12,0	21,0	12,0	0,60	20.0	12,40	6,5	15,0	6,0	0,40	15,0
2,60	16,0	25,0	16,0	0.73	22,0	12,60	6,0	12,0	6,0	0,40	15,0
2,80	17,0	28,0	17,0	0,67	25,0	12,80	6,0	12,0	6,0	0.47	13,0
3,00	20,0	30,0	20,0	0,80	25,0	13.00	6,0	13,0	6,0	0.40	15,0
3,20	19,0	31,0	19,0	0,73	26,0	13,20	7,0	13,0	7,0	0,40	17,0
3,40	19,0	30,0	19,0	0,73	26,0	13,40	13,0	19,0	13,0	0,40	32,0
3,60	19,0	30,0	19,0	0,73	26,0	13,60			13,0		
	18,0	29,0	19,0	0,73	20,0		17,0	23,0	17,0	0,53	32,0
3,80	10,0	29,0	18,0	0,80	22,0	13,80	9,0	17,0	9,0	0,53	17,0
4,00	17,0	29,0	17,0	0,73	23,0	14,00	7,0	15,0	7,0	0,40	17,0
4,20	16,0	27,0	16,0	0,53	30,0	14,20	7,0	13,0	7,0	0,40	17,0
4,40	9,0	17,0	9,0	0,40	22,0	14,40	7,0	13,0	7,0	0,40	17,0
4,60	7,0	13,0	7,0	0,33	21,0	14,60	17,0	23,0	17,0	0,93	18,0
4,80	6,0	11,0	6,0	0,27	22,0	14,80	13,0	27,0	13,0	0,53	24,0
5,00	6,0	10,0	6,0	0,33	18,0	15,00	16,0	24,0	16,0	1,07	15,0
5,20	7,0	12,0	7,0	0,33	21,0	15,20	45,0	61,0	45,0	1,27	36,0
5,40	8,0	13,0	8,0	0,27	30,0	15,40	36,0	55,0	36,0	1,20	30,0
5,60	7,0	11,0	7,0	0,40	17,0	15,60	38,0	56,0	38,0	1,73	22,0
5,80	5,0	11,0	5,0	0,20	25,0	15,80	37,0	63,0	37,0	1,27	29,0
6,00	5,0	8,0	5,0	0,27	19,0	16,00	16,0	35,0	16,0	0,73	22,0
6,20	5,0	9,0	5,0	0,17	30,0	16,20	21,0	32,0	21,0	1,33	16,0
6,40	7,0	9,5	7,0	0,20	35,0	16,40	35,0	55,0	35,0	0,60	58,0
6,60	5,0	8,0	5,0	0,13	37,0	16,60	46,0	55,0	46,0	0,87	53,0
6,80	7,0	9,0	7,0	0,33	21,0	16,80	28,0	41,0		0,07	20.0
7,00	14.0	19,0	14,0	0,33	52,0	17,00	23,0		28,0	0,93	30,0
7,20	10,0	14,0	10,0	0,40	25,0	17,00	12,0	37,0	23,0	0,93	25,0
	5,0	11,0	5,0	0,40				26,0	12,0	0,67	18,0
7,40	5,0			0,13	37,0	17,40	60,0	70,0	60,0	1,40	43,0
7,60	5,0	7,0	5,0	0,17	30,0	17,60	41,0	62,0	41,0	1,47	28,0
7,80	4,5	7,0	4,0	0,13	30,0	17,80	71,0	93,0	71,0	1,13	63,0
8,00	5,0	7,0	5,0	0,20	25,0	18,00	40,0	57,0	40,0	1,07	37,0
8,20	6,0	9,0	6,0	0,53	11,0	18,20	13,0	29,0	13,0	1,07	12,0
8,40	8,0	16,0	8,0	0,33	24,0	18,40	10,0	26,0	10,0	0,80	12,0
8,60	23,0	28,0	23,0	0,33	69,0	18,60	13,0	25,0	13,0	0,87	15,0
8,80	23,0	28,0	23,0	0,87	27,0	18,80	15,0	28,0	15,0	0,53	28,0
9,00	8,0	21,0	8,0	0,87	9,0	19,00	14,0	22,0	14,0	0,53	26,0
9,20	15,0	28,0	15,0	0,33	45,0	19,20	8,0	16,0	8,0	0,47	17,0
9,40	7,0	12,0	7,0	0,23	30,0	19,40	15,0	22,0	15,0	0,67	22,0
9,60	5,5	9,0	6,0	0,27	22,0	19,60	16,0	26,0	16,0	0,67	24,0
9,80	5,0	9,0	5,0	0,27	19,0	19,80	15,0	25,0	15,0	0,80	19,0
10,00	5,0	9,0	5,0	0,27	19,0	10,00	14,0	26,0	14,0	0,00	15,0

PENETROMETRO STATICO tipo da 16 t - (senza anello allargatore) COSTANTE DI TRASFORMAZIONE Ct = 10 - Velocità avanzamento punta 2 cm/s - punta meccanica tipo Begemann ø = 35.7 mm (area punta 10 cm² - apertura 60°) - manicotto laterale (superficie 150 cm²)

CPT 7

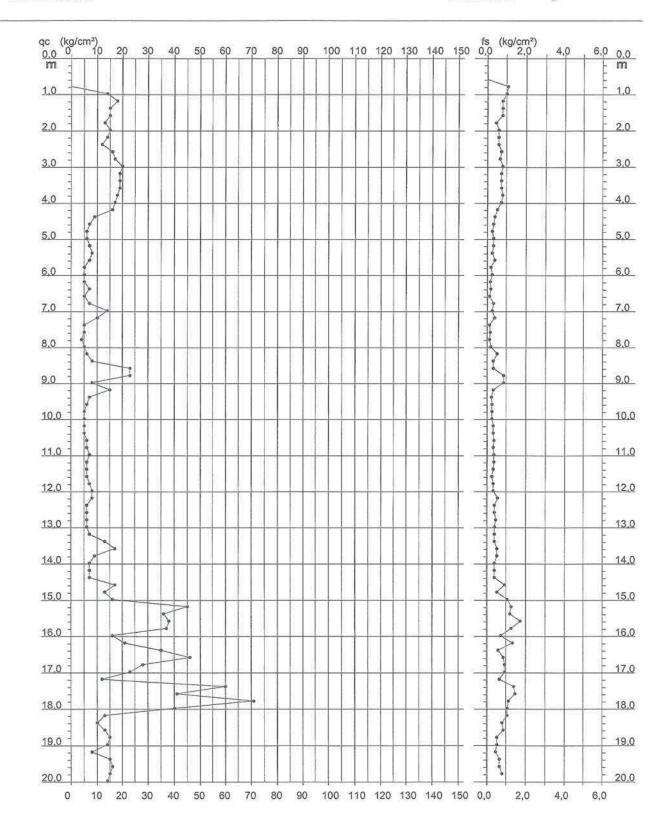
2.0105-035

- committente :

- lavoro: - località: Costruzione Capannone

- assist. cantiere :

Bientina (PI) - Via Gofi di Pecora


- data: - quota inizio:

- falda:

13/08/1998

- data emiss. :

Piano Campagna Falda non rilevata

PROVA PENETROMETRICA STATICA VALUTAZIONI LITOLOGICHE

CPT 7

2.0105-035

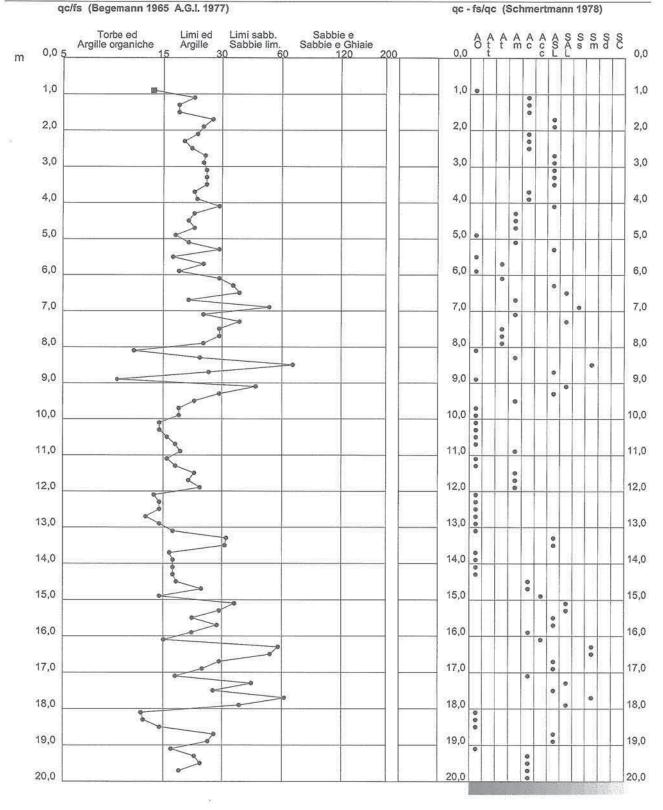
- committente :

- lavoro: - località: Costruzione Capannone

Bientina (PI) - Via Gofi di Pecora

- assist. cantiere :

- data :


13/08/1998

- quota inizio: - falda :

Piano Campagna Falda non rilevata

- data emiss. :

qc - fs/qc (Schmertmann 1978)

CPT 7

2.0105-035

- committente :

- lavoro : - località : Costruzione Capannone

Bientina (PI) - Via Gofi di Pecora

- assist. cantiere :

- data :

- quota inizio : - falda : - data emiss. :

13/08/1998 Piano Campagna

Falda non rilevata 10 Fb

	IIIIINA	TURA (toesiva.	ПШШ				NATI	IRA	CIRA	NUL	ARE			
Prof. qc qc/fs Natura Y* m kg/cm² (-) Litol. t/m³	p'vo Cu kg/cm² kg/cm²	OCR (-)	Eu50 Eu25 kg/cm²	Mo kg/cm²	Dr %	ø1s (9	ø2s (°)	ø3s (°)	ø4s (°)	ødm (°)	ømy (°)	Amax/g (-)	E'50 kg/cr	E'25 n² kg/c	Mo m²
0,20 ??? 1,85 0,40 ??? 1,85 0,60 ??? 1,85	0,07	(<u> </u>	1 1	**	-	Ξ	=			- 	-	-	-	-	
0,80 ??? 1,85 1,00 14 14 2//// 1,85	0,15 0,19 0,64	29,4	108 162	48	: ::::::::::::::::::::::::::::::::::::	=	=	=	-	-	=	Ξ	-	=	Ξ
1,20 18 22 2/// 1,85 1,40 15 19 2/// 1,85 1,60 15 19 2/// 1,85	0,26 0,67	28,8 20,5 17,3	128 191 113 170 113 170	56 50 50	=		=	3	Ξ	Ξ	=	Ξ	-	Ξ	=
1,80 13 28 2/// 1,85 2,00 15 25 2/// 1,85	0,33 0,60 0,37 0,67	13,2 13,1	103 154 113 170	47 50	-	•			-	-	-	-	=	-	<u> </u>
2,40 12 20 2/// 1,85 2,60 16 22 2/// 1,85	0,44 0,57	11,0 8,6 10,0	108 162 105 158 118 177	48 45 52	-	-		-	=	-	-	=	=	-	_
2,80 17 25 2//// 1,85 3,00 20 25 4/:/: 1,85	0,52 0,72 0,55 0,80	9,5 9,9	125 187 136 204	54 60	31	32	35	38	40	31	27	0,060	33	50	60
3,60 19 26 2/// 1,85	0,63 0,78 0,67 0,78	8,8 8,2 7,6	140 210 150 225 162 244	58 58 58		-	=	=	Ξ	=	-	=	-		-
3,80 18 22 2//// 1,85 4,00 17 23 2//// 1,85 4,20 16 30 4/:/: 1,85	0,74 0,72	6,8 6,1 5,5	178 267 195 292 211 316	56 54 52	15	30	33	36	39	28	27	0,029	27		<u></u>
4,40 9 22 2/// 1,85 4,60 7 21 2/// 1,85	0,81 0,45 0,85 0,35	3,0	222 333 195 292	38 32								0,029		40	48
4,80 6 22 2//// 1,85 5,00 6 18 2//// 1,85 5,20 7 21 2//// 1,85	0,93 0,30 0,96 0,35	1,6 1,5 1,8	174 260 175 262 200 300	29 29 32	-	:		-			-	Ξ	-	Ξ	<u>:</u> —
5,40 8 30 4/:/: 1,85 5,60 7 17 2//// 1,85 5,80 5 25 2//// 1,85	1,00 0,40 1,04 0,35	2,0 1,6	224 336 202 304 150 225	35 32 25	Ξ	28	31	35	38	25	26		13	20	24
6,00 5 19 2/// 1,85 6,20 5 30 4/:/: 1,85	1,11 0,25 1,15 0,25	1,0 1,0 0,9	150 225 150 225	25 25	=	28	31	35	38	 25	25	Ξ	- 8	13	15
6,40 7 35 4/:/: 1,85 6,60 5 37 4/:/: 1,85 6,80 7 21 2//// 1,85	1,22 0,25 1,26 0,35	1,4 0,9 1,3	206 309 150 225 207 311	32 25 32	=	28 28	31	35 35	38 38	25 25	26 25	=	12	18 13	21 15
7,00 14 52 4/:/: 1,85 7,20 10 25 2//// 1,85	1,30 0,64 1,33 0,50	2,6 1,8	334 501 284 426	48 40	**	28	31	35	38	25	26	2	23	35	42
7,60 5 30 4/:/: 1,85 7,80 4 30 4/:/: 1,85	1,41 0,25 1,44 0,20	0,7 0,7 0,5	150 225 150 225 120 180	25 25 20 25		28 28 28	31 31 31	35 35 35	38 38 38	25 25 25	25 25 25	=	8 8 7	13 13 10	15 15 12
8,00 5 25 2//// 1,85 8,20 6 11 1*** 1,85 8,40 8 24 2//// 1,85	1,52 0,30	0,7 0,8 1,2	150 225 39 59 238 357	25 9 35	Ξ	-	=	-	-	-		=			
8,60 23 69 3:::: 1,85 8,80 23 27 4/:/: 1,85 9,00 8 9 2//// 1,85	1,59 1,63 0,87	2,9	438 656	69	10 10	29 29	32 32	36 35	39 39	26 26	28 28	0,021	38 38	58 58	69 69
9,20 15 45 4/:/: 1,85 9,40 7 30 4/:/: 1,85	1,70 0,67 1,74 0,35	1,1 1,9 0,8	239 359 375 563 210 315	35 50 32	=	28 28	31 31	35 35	38 38	25 25	27 26	-	25 12	38 18	45 21
9,80 5 19 2//// 1,85 10.00 5 19 2//// 1.85	1,81 0,25	0,7 0,5 0,5	180 270 150 225 150 225	29 25 25	=	-		-	Ξ	-	=	-	=	=	E
10,20 5 15 1*** 1,85 10,40 5 15 1*** 1,85	1,89 0,25 1,92 0,25	0,5 0,5	33 49 33 49	8	-	-		-	-	Ξ		1		5	
10,80 6 18 2//// 1,85 11,00 7 19 2//// 1,85	2,00 0,30 2.03 0.35	0,6 0,6 0,7	180 270 180 270 210 315	29 29 32	=	=	Ξ	=	=	-	=	-			<u> </u>
11,20 6 16 2/// 1,85 11,40 6 18 2/// 1,85	2,07 0,30 2,11 0,30	0,6 0,5 0,5	180 270 180 270 180 270	29 29 29	Ξ	Ξ	Ξ	Ξ	-	=	Ξ	7	-		2
11,80 7 21 2//// 1,85 12,00 8 24 2//// 1,85	2,18 0,35 2,22 0,40	0,6	210 315 240 360	32 35	-	-	-	=	-	-	2	Ē	Ξ		
12,40 6 15 1*** 1,85 12,60 6 15 1*** 1,85	2,26 0,40 2,29 0,30 2,33 0,30	0,7 0,5 0,5	240 360 39 59 39 59	35 9 9	-		=	=	Ξ	Ξ	Ξ	=	=	-	20
12,80 6 13 1*** 1,85 13,00 6 15 1*** 1,85 13,20 7 17 2//// 1,85	2,37 0,30 2,40 0,30 2,44 0,35	0,5 0,5 0,6	39 59 39 59 210 315	9 9 32			Ξ	=	=	=	Ξ	=	Ξ	Ξ	<u> </u>
13,40 13 32 4/:/: 1,85 13,60 17 32 4/:/: 1,85	2,48 0,60 2,52 0,72	1,1 1,3 0,7	362 542 427 640	47 54	22	28 28	31 31	35 35	38 38	25 25	26 27	=	22 28	33 43	39 51
14,00 7 17 2//// 1,85 14,20 7 17 2//// 1,85	2,59 0,35 2,63 0,35	0,7 0,5 0,5	270 405 210 315 210 315	38 32 32		7	==	=	=	=	=	-	-	Ξ	Ē_
14,40 7 17 2/// 1,85 14,60 17 18 2/// 1,85 14,80 13 24 2/// 1,85	2,66 0,35	0,5 1,2 1,0	210 315 430 644 363 544	32 54 47	2			=	_	-		-		Ξ.	-
15,00 16 15 2/// 1,85 15,20 45 36 3:::: 1,85	2,77 0,70	1,1	415 623	52	19	31	34	36	40	27	31	0,037	**	113	135 —
15,00 16 15 2/// 1,85 15,20 45 36 3::: 1,85 15,40 36 30 4/:/: 1,85 15,60 37 29 4/:/: 1,85 15,80 37 29 4/:/ 1,85 16,00 16 22 2/// 1,85	2,85 1,20	2,1 2,2 2,1 1,0 1,2	663 995 692 1038 681 1022	108 114 111	11 13 12	30 30 30	33 33 33	36 36 36	39 39 39	25 26 25	30 30 30	0,023 0,025 0,023	75 60 63 62	95	108 114 111
16,00 16 22 2/// 1,85 16,20 21 16 4/:/: 1,85 16,40 35 58 3:::: 1,85	3,00 0,82	1,0 1,2	417 625 488 732	52 63	- 9	28 29 31			-	**	-		24.00	53	63-
16,60 46 53 3:::: 1,85 16,80 28 30 4/:/: 1,85	3,07 3,11 0,97	1,5	565 847	84	18	28	31 32 33 31	35 35 36 35	38 39 39 38	25 25 26 25	27 29 31 28	0,019 0,034 0,001	35 58 77 47	115 70 58	105 138 84
16,80 28 30 4/:/: 1,85 17,00 23 25 4/:/: 1,85 17,20 12 18 2/// 1,85 17,40 60 43 3:::: 1,85	3,14 0,87 3,18 0,57 3,22	1,5 1,3 0,7	514 771 343 514	69 45	26	28	31	35	38	25	28	0,049	38 100		69
17,60 41 28 4/:/: 1,85 17,80 71 63 3:::: 1,85	3,26 1,37 3,29 -	2,1	756 1134	123	13 31	32 30 32	34 33 35	37 36 38	40 39 40	28 25 28 25	32 30 32 30	0,025	68 118	103 178	123 213
17,60 41 28 4/:/: 1,85 17,80 71 63 3:::: 1,85 18,00 40 37 3::: 1,85 18,20 13 12 2/// 1,85 18,40 10 12 2/// 1,85 18,60 13 15 2/// 1,85	3,33 3,37 0,60 3,40 0,50	0,7	363 544 300 450	47 40	11	30	33	36	39	25	30	0,022	67	100	120
18.80 15 28 2/// 1.85	3,44 0,60 3,48 0,67 3,51 0,64	0,7 0,8 0,7	363 544 400 600 382 573	47 50 48	_		=	-	-		=	=	-	Ξ	=
19,20 8 17 2/// 1,85 19,40 15 22 2//// 1,85	3,55 0,40 3,59 0,67	0,4	240 360 400 600	35 50	I	2		-	-		Ξ	=	-	-	
19,60 16 24 2/// 1,85 19,80 15 19 2/// 1,85 20,00 14 2/// 1,85	3,63 0,70 3,66 0,67 3,70 0,64	0,8 0,7 0,7	417 626 400 600 382 573	52 50 48	2 (1			-	-	:	-		-	2	Ξ

PROVA PENETROMETRICA STATICA LETTURE DI CAMPAGNA / VALORI DI RESISTENZA

2.0105-035

- committente :

- assist. cantiere :

- lavoro : - località : Costruzione Capannone

Bientina (PI) - Via Gofi di Pecora

- data :

13/08/1998

- quota inizio: - falda :

Piano Campagna Falda non rilevata

prf	L1	L2	qc	fs	qc/fs	prf	L1	L2	qc	fs	qc/fs
m		799	Kg/cm ²	Kg/cm ²	7,041 T	m		<u> </u>	Kg/cm ²	Kg/cm ²	
0.00						10,20	36,0	50,0	36,0	0,93	39,0
0,20	10000	Marries .				10,40	30,0	44,0	30,0	1,20	25,0
0,40							50,0	68,0	50,0	1,07	47,0
0,60	(7700	5950		****	10,60				1,40	44,0
0,80	****		-	1,00		10,80	61,0	77,0	61,0		
1,00	27,0	42,0	27,0	1,60	17,0	11,00	45,0	66,0	45,0	1,40	32,0
1,20	20,0	44.0	20,0	1,47	14,0	11,20	35,0	56,0	35,0	1,47	24,0
1,40	15,0	37,0	15,0	1,00	15,0	11,40	30,0	52,0	30,0	1,07	28,0
1,60	16,0	31,0	16,0	1,13	14,0	11,60	39,0	55,0	39,0	1,27	31,0
1,80	15,0	32,0	15,0	1,20	12,0	11,80	30,0	49,0	30,0	1,00	30,0
2,00	11,0	29,0	11,0	0,87	13,0	12,00	28,0	43,0	28,0	0,93	30,0
2,20	13,0	26,0	13,0	0,80	16,0	12,20	38,0	52,0	38,0	1.00	38,0
2,20	13,0	25,0	13,0	0,60	22,0	12,40	30,0	45,0	30,0	0,67	45,0
2,40	13,0	25,0	15,0	0,73		12,60	40,0	50,0	40,0	1,07	37,0
2,60	16,0	25,0	16,0	0,73	22,0	12,80	27,0	43,0	27,0	0,67	40,0
2,80	15,0	26,0	15,0	0,80	19,0			32,0	22,0	0,73	30,0
3,00	13,0	25,0	13,0	0,80	16,0	13,00	22,0	32,0	22,0		40,0
3,20	18,0	30,0	18,0	0,87	21,0	13,20	35,0	46,0	35,0	0,87	40,0
3,40	17,0	30,0	17,0	0,80	21,0	13,40	25,0	38,0	25,0	0,67	37,0
3,60	17,0	29,0	17,0	0,87	20,0	13,60	26,0	36,0	26,0	0,60	43,0
3,80	19,0	32,0	19,0	1,07	18,0	13,80	24,0	33,0	24,0	0,60	40,0
4,00	16,0	32,0	16,0	1,00	16,0	14.00	18,0	27,0	18,0	0,33	54,0
4,20	17,0	32,0	17,0	0,93	18,0	14,20	31,0	36,0	31,0	0,73	42,0
4,40	18,0	32,0	18,0	1,07	17,0	14,40	34,0	45,0	34,0	1,13	30,0
4,60	17,0	33,0	17,0	1,00	17,0	14,60	28,0	45,0	28,0	0,80	35,0
4.00	17,0	34,0	19,0	1,07	18,0	14,80	41,0	53,0	41,0	1,40	29,0
4,80	19,0	31,0	15,0	1,07	14,0	15,00	32,0	53,0	32,0	1,67	19,0
5,00	15,0	31,0	15,0	1,00	15,0	15,20	54,0	79,0	54,0	1,20	45,0
5,20	15,0	31,0	15,0	1,00	15,0		57,0	75,0	57,0	1,73	33,0
5,40	17,0	32,0	17,0	1,00	17,0	15,40		75,0	37,0		34,0
5,60	21,0	36,0	21,0	1,13	19,0	15,60	36,0	62,0	36,0	1,07	
5,80	18,0	35,0	18,0	1,00	18,0	15,80	35,0	51,0	35,0	0,80	44,0
6,00	15,0	30,0	15,0	0,73	20,0	16,00	30,0	42,0	30,0	1,20	25,0
6,20	12,0	23.0	12,0	0,50	24,0	16,20	31,0	49,0	31,0	0,93	33,0
6,40	8,5	16,0	8,0	0,40	20,0	16,40	33,0	47,0	33,0	1,07	31,0
6,60	7,0	13,0	7,0	0,47	15.0	16,60	60,0	76,0	60,0	0,13	450,0
6,80	10,0	17,0	10,0	0,33	30,0	16,80	7,0	9,0	7,0	0,67	10,0
7,00	13,0	18,0	13,0	0,47	28.0	17,00	80,0	90,0	80,0	2,87	28,0
7,20	6,0	13,0	6,0	0,33	18,0	17,20	77,0	120,0	77,0	1,33	58,0
7,20	6,0	11,0	6,0	0,23	26,0	17,40	120,0	140,0	120,0	0,87	138,0
7,40	6,0	11,0	4,0	0,40	10,0	17,60	37,0	50,0	37,0	0,87	43,0
7,60	4,5	8,0 11,0	4,0	0,40			11,0	24,0	11,0	0,80	14,0
7,80	5,0	11,0	5,0	0,33	15,0	17,80		24,0		1,27	9,0
8,00	4,0	9,0	4,0	0,17	24,0	18,00	11,0	23,0	11,0	0.67	16,0
8,20	5,0	7,5	5,0	0,27	19,0	18,20	11,0	30,0	11,0	0,67	10,0
8,40	16,0	20,0	16,0	0,73	22,0	18,40	8,0	18,0	8,0	0,80	10,0
8,40 8,60	9,0	20,0	9,0	0,40	22,0	18,60	12,0	24,0	12,0	0,73	16,0
8,80	6,0	12,0	6,0	0,20	30,0	18,80	15,0	26,0	15,0	0,80	19,0
9,00	4,0	7,0	4,0	0,40	10,0	19,00	13,0	25,0 23,0	13,0	0,87	15,0
9,20	8,0	14,0	8,0	0,13	60,0	19,20	10,0	23.0	10,0	0,53	19,0
9,40	13,0	15,0	13,0	0,73	18,0	19,40	9,0	17,0	9,0	0.47	19,0
0.60	10,0	24.0	10,0	0,73	30,0	19,60	8,0	15,0	8,0	0,73	11,0
9,60	10,0	21,0	10,0	0,80	47,0	19,80	15,0	26,0	15,0	0,67	22,0
9,80	38,0 31,0	43,0 43,0	38,0 31,0	0,80	33,0	20,00	12,0	22,0	12,0		,0

⁻ PENETROMETRO STATICO tipo da 16 t - (senza anello allargatore) - - COSTANTE DI TRASFORMAZIONE Ct = 10 - Velocità avanzamento punta 2 cm/s - punta meccanica tipo Begemann ø = 35.7 mm (area punta 10 cm² - apertura 60°) - manicotto laterale (superficie 150 cm²)

CPT 8

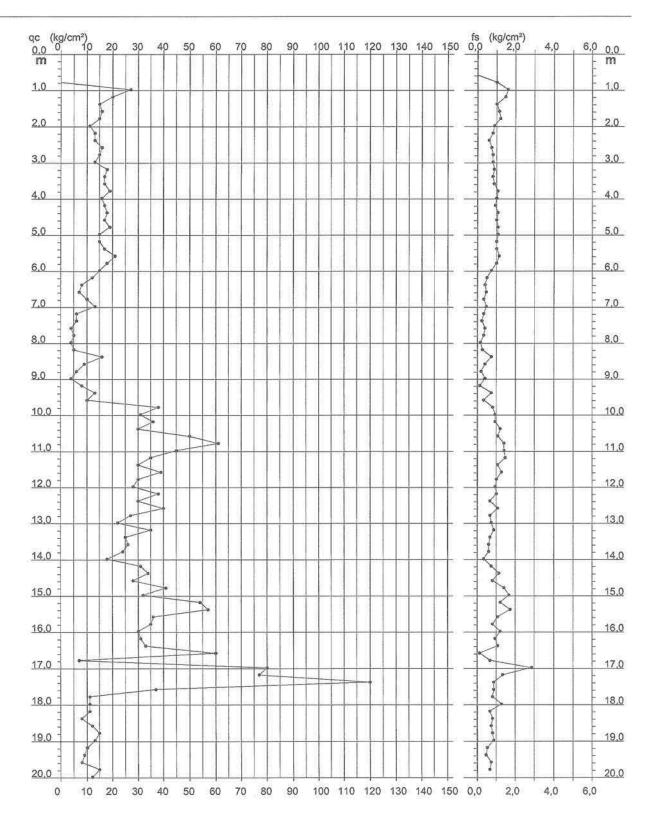
2.0105-035

- committente :

- lavoro: - località : Costruzione Capannone

Bientina (PI) - Via Gofi di Pecora

- assist. cantiere :


- data :

- quota inizio:

Piano Campagna Falda non rilevata

13/08/1998

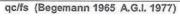
PROVA PENETROMETRICA STATICA VALUTAZIONI LITOLOGICHE

CPT 8

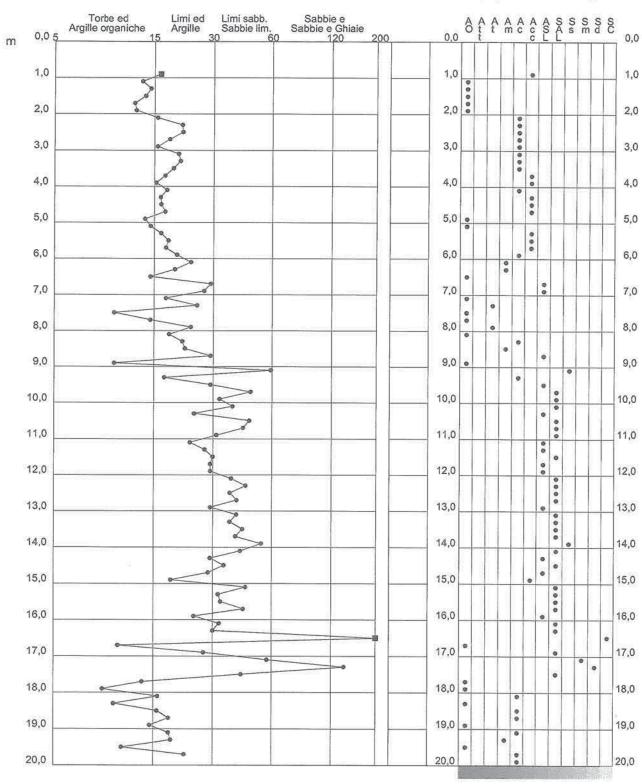
2.0105-035

- committente :

- lavoro: - località: Costruzione Capannone


Bientina (PI) - Via Gofi di Pecora

- assist. cantiere :


- data:

- quota inizio:

- falda : - data emiss. : 13/08/1998 Piano Campagna Falda non rilevata

CPT 8

2.0105-035

- committente :

- lavoro : - località :

Costruzione Capannone Bientina (PI) - Via Gofi di Pecora

- assist. cantiere :

- data : - quota inizio : - falda :

13/08/1998

- data emiss. :

Piano Campagna Falda non rilevata

					IIIII	NAT	URA	¢bEs	SIVA	ППП		Ш	Ш	NATI	IRA	GRA	NUL	ARH			
Prof.	qc qc kg/cm²		Natura Litol.	Y' t/m³	p'vo kg/cm²	Cu kg/cm²	OCR	Eu50	Eu25	Mo ka/cm²	Dr %	ø1s	ø2s	ø3s	Ø4s	ødm		Amax/g	E'50		Mo
0,20 0,40	rg/cm		??? ???	1,85 1,85	0,04	***	(-)	kg/c	 I	kg/cm²	%	(9	(?)	(?)	(9	()	(9	(-)	kg/cr	**	**
0,60 0,80	2	-	??? ???	1,85	0,11	***		-	=	=	=				-	Ξ	=	Ξ	Ξ	=	=
1,00	27 20	17	4/:/:	1,85 1,85 1,85	0,19	0,95	48,4 31,2	161 136	242 204	81 60	68 53	38 35	39 38	41 40	43 42	39 36	28 27	0,154 0,113	45 33	68 50	81 —
1,40 1,60 1,80	15 16 15	15 14 12	2/// 2/// 2///	1,85 1,85 1,85	0,26 0,30 0,33	0,67 0,70 0,67	20,5 18,3 15,0	113 118 113	170 177 170	50 52 50	<u> </u>	Ξ	=	2	-	Ξ	-	Ξ	Ξ	-	=
2,00	11 13	13 16	2////	1.85	0,37	0,54	10,0	91	137 154	42 47	-			-		-	-	=	-		Ξ—
2,40 2,60 2,80	16	22 22 19	2/// 2/// 2////	1,85 1,85 1,85 1,85	0,44 0,48 0,52	0,60 0,70 0,67	9,2 10,0 8,6	106 118 123	159 177 184	47 52 50	=	-	-	20		-	-	=	-	-	Ξ
3,00	13 18	16 21	2////	1,85	0,55	0,60	7.0 8,4	139 141	209 211	47 56	***	=		-	-	-	-	Ξ	=	=	<u> </u>
3,40 3,60 3,80	17	20	2//// 2//// 2////	1,85 1,85 1,85	0,63 0,67 0,70	0,72 0,72 0,78	7,5 7,0 7,1	154 167 176	231 251 263	54 54 58	=	-	-	-	_	-			_	::	34
4,00	16	16	2///	1,85	0,74	0,70 0,72	5,8 5,7	198 208	297 312	52 54	=	=	-	_	-	_	-	1	=	=	<u>:</u>
4,40 4,60 4,80	17	17	2/// 2////	1,85 1,85 1,85	0,81	0,75 0,72 0,78	5,7 5,1	219 234	328 351	56 54	-		-		-		=	-			#
5,00 5,20	15	14	2////	1,85 1,85	0,89 0,93 0,96	0,67 0,67	5,3 4,2 4,0	243 258 269	364 387 403	58 50 50	=	=	-	=	=	-	2	=	-		
5,40 5,60	17 21	17 19	2////	1,85 1,85 1,85	1,00	0,72	4,2	279 288	419 432	54 63	17	30	33	36	39	28	27	0,033	35	53	63
5,80 6,00 6,20	15	20	2////	1,85 1,85 1,85	1,07 1,11 1,15	0,75 0,67 0,57	4,0 3,3 2,6	299 311 298	449 466 447	56 50 45		50		=	Ξ	-		-	_	=	=_
6,40 6,60	8 7	20 15	2//// 1***	1,85 1,85	1 18	0,40	1,6	231 45	347 67	35 11	#1	-57	-	-	-	-	227	-			122
6,80 7,00 7,20	13	28	2////	1,85 1,85 1,85	1,22 1,26 1,30 1,33	0,50 0,60 0,30	2,0 2,4 1,0	280 324 180	421 485 270	40 47 29	-	28	31	35	38	25	26	***	17	25	30
7,40 7,60	6	26	2//// 1***	1,85 1,85	1,41	0,30	0,9	180 26	270 39	29 6	-	-	Ξ								
7,80 8,00 8,20	4	24	2////	1,85 1,85 1,85	1,44 1,48 1,52	0,25 0,20 0,25	0,7 0,5 0,7	33 120 150	49 180 225	8 20 25	Ξ	=	=	-	-	-	2			2)	
8,40 8,60	16	22 22	2//// 2////	1,85 1,85	1,55 1,59	0,25 0,70 0,45	2,3	378 266	566 399	52 38	-	=				-	: 42		22 h	II)	10
8,80 9,00 9,20	4	10	1***	1,85 1,85 1,85	1,63 1,66 1,70	0,30 0,20 0,40	0,8 0,4 1,0	180 26 240	270 39 360	29 6 35	=	28 28	31	35 35	38	25 25	26 26		10	15	18
9,40 9,60	13 10	18 30	2//// 4/:/:	1,85 1,85	1,74 1,78	0,60	1,7	348 296	522 443	47 40	-	28	31	35	38	25	26	Ξ	17	25	30
9,80 10,00 10,20	31	33	3::::	1,85 1,85 1,85	1,81 1,85 1,89	175	-	=	-	Ξ	24 17 21	31 30 31	34 33 34	37 36 37	40 39 40	28 27 28	30 29 30	0,046 0,032 0,041	63 52 60	78	114 93 108 —
10,40 10,60	30 2 50	25 47	4/:/: 3::::	1,85 1,85	1,92 1,96	1,00	2,8	511	766	90	15 32	30	33 35	36 38	39 41	27 29	29 31 32 31	0,028	50 83	75 125 1	90 150
10,80 11,00 11,20	45	32	3::::	1,85 1,85 1,85	2,00 2,03 2,07	1,17	3,1	570	855	105	38 27 18	33 32 31	36 35 33	38 37 36	41 40 39	30 29 27	32 31 29	0,075 0,052 0,035	102 75 58	113 1	183 135 105
11,40 11,60	30 39	28 31	4/:/: 3::::	1,85 1,85	2,11	1,00	2,5	532	798	90	12 21	30 31	33 34	36 37	39 40	26 27	29 30 29 28	0,024	50	75 98 1	90
11,80 12,00 12,20	28	30	4/:/:	1,85 1,85 1,85	2,18 2,22 2,26	1,00 0,97	2,4	539 529	808 793	90 84	12 9 19	30 29 31	33 32 34	36 35 36	39 39 40	26 25 27	29 28 30	0,023	65 50 47	75 70	90
12,40 12,60	30 4 40 3	45 37	3:::: 3::::	1,85 1,85	2,29	-	2			25	10 20	29	32 34	36 37	39 40	26 27 25	29 30 28 28	0,036 0,021 0,038	63 50 67	75	90 120
12,80 13,00 13,20	22 3	30	4/:/:	1,85 1,85 1,85	2,37 2,40 2,44	0,85	1,7	486	729	66	6 14	29 28 30	32	35 35	38 38	25	28 28	0,014	45 37	68 55	81 66
13,40 13,60	25 26	37 43	3:::: 3::::	1,85 1,85	2,48 2,52		**	-	Ξ	=	2 3	28 28	33 32 32	36 35 35	39 38 38	26 25 25	29 28 28 28 27	0,027 0,005 0,008	58 42 43	63	75 78
13,80 14,00 14,20	18 5	54	4/:/:	1,85 1,85	2,55 2,59 2,63	0,75	1,3	442	663	56		28 28	31 31	35 35	38 38	25 25		-	40 30	60 45	72 54
14,40 14,60	34 3 28 3	30 35	4/:/: 3::::	1,85 1,85 1,85	2,66	1,13	2,2	625	937	102	8 11 4	29 30 29	32 33 32	35 36 35	39 39 38	25 25 25	29 29 28	0,017 0,022 0,010	52 57 47	85 1	93 102 84
14,80 15,00	41 2	29 19	4/:/: 4/:/:	1,85 1,85	2,70 2,74 2,77	1,37 1,07	2,6 1,9	712 603	1068 904	123 96	17 8	30 29	33 32	36 35	39 39 40	26 25 28 28	30 29	0,032	68 53 90	103 1	23 96
15,20 15,40 15,60	57	33	3::::	1,85 1,85 1,85	2,81 2,85 2,89	=	-	=	-	-	26 27 11	30 29 32 32 30 29 29 29 29	33 32 34 35 32 32 32 32 32 34	36 35 37 37 36 35 35 35 35	40 40 39	28 28 25	30 29 31 31 30 29 29 29 29	0,049 0,052 0,022	90 95 60	135 1 143 1	62 71
15,80 16,00	35 4 30 2	25	3:::: 4/:/:	1,85 1,85	2,89 2,92 2,96	1,00	1,6	578	868	90	10	29 29	32 32	35 35	39 38	25 25 25	29 29	0,022 0,020 0,010	58 50	88 1	08 05 90
16,20 16,40	33 3	31	3::::	1,85 1,85	3,00	22		-	-	122 137	5 7	29 29	32	35 35	39 38 38 39 40	25 25 25 25 28	29 29	0,012	52 55	78 83	93
16,80 17,00	7 80 2	50 10 28	3:::: 1*** 4/:/:	1,85 1,85 1.85	3,07 3,11 3,14	0,35 2,67	0,4 5,1	46 865	68 1298	11 240	27			38	41		-	0,052	133	-	80
15,80 16,00 16,20 16,40 16,60 16,80 17,20 17,40	80 2 77 5 120 13	58 38	3::::	1,85 1,85 1,85 1,85	3,18		-	-	2	-	36 35 50 9	33 35 29	36 35 37 32	38 40 35	41 42 39	29 29 31 25	33 33 35 30	0,068	128	193 2 300 3	40 31 60
17,80	11	14 :	2///	1,85 1,85 1,85	3,26 3,29 3,33 3,37	0,54 0,54 0,54	0,6	322 322	483 483	42 42	9	29	32	35		25	30	0,019	62	93 1	11
18,00 18,20 18,40	11 1	16 2 10 2	2///	1,85 1,85 1,85	3,37 3,40	0,54 0,40 0,57	0,6 0,6 0,4 0,7	322 240	483 360	42 42 35	 	-		227		=		=	=	-	<u>:</u> —
18,60 18,80 19,00	15	19	2////	1,85 1,85 1,85	3,44 3,48 3,51	0,57 0,67 0,60	0,7 0,8 0,7	343 400 363	514 600 544	45 50 47	== ==	=		=			-	-	-	-	-
19,20 19,40	10 1	19 :	2///	1,85 1,85	3,55	0,50	0,5	300 270	450 405	40 38	33					_	-	=	=	-	<u>:</u> -
19,60 19,80 20,00	8 1 15 2 12	22 2	2//// 2//// 2////	1,85 1,85 1,85	3,63 3,66 3,70	0,40 0,67 0.57	0,4	240 400 343	360 600 514	35 50 45	12	1		=			Ξ	7		-	=
20,00	12	m á	2////	1,85	3,70	0,57	0,6	343	514	45	1000	77	550	6.5	77	***	200	***	**		

PROVA PENETROMETRICA STATICA LETTURE DI CAMPAGNA / VALORI DI RESISTENZA

CPT 9

2.0105-035

- committente :

- assist. cantiere :

- lavoro : - località :

Costruzione Capannone Bientina (PI) - Via Gofi di Pecora

- data :

14/08/1998

- quota inizio: - falda :

Piano Campagna 3,00 da quota inizio

prf	L1	L2	qc	fs	qc/fs	prf	L1	L2	qc	fs	qc/fs
m		5.75	Kg/cm ²	Kg/cm ²		m	í ð	*	Kg/cm ²	Kg/cm²	
0,20	2000		94			10,20	7,0	16,0	7,0	0,33	21,0
0,40			22		100	10,40	6,0	11,0	6,0	0,27	22,0
0,60					2002	10,60	5,0	9,0	5,0		19,0
0,80	1,07000.		550	0,93						0,27	19,0
1,00	19,0	33,0	19,0	1,00	40.0	10,80	5,0	9,0	5,0	0,20	25,0
1,00		33,0		1,00	19,0	11,00	5,0	8,0	5,0	0,20	25,0
1,20	25,0	40,0	25,0	1,20	21,0	11,20	6,0	9,0	6,0	0,20	30,0
1,40	11,0	29,0	11,0	1,13	10,0	11,40	6,0	9,0	6,0	0,33	18,0
1,60	18,0	35,0	18,0	0,93	19,0	11,60	5,0	10,0	5,0	0,27	19,0
1,80	9,0	23,0	9,0	0,47	19,0	11,80	6,0	10,0	6,0	0,33	18,0
2,00	10,0	17,0	10,0	0,53	19,0	12,00	6,0	11,0	6,0	0.40	15,0
2,20	10,0	18,0	10,0	0,53	19,0	12,20	6,0	12,0	6,0	0,33	18,0
2,40	15,0	23,0	15,0	0,67	22,0	12,40	8,0	13,0	8,0	0,47	17,0
2,60	14,0	24,0	14,0	0,73	19,0	12,60	8,0	15,0	8,0	0,40	20,0
2,80	11,0	22,0	11,0	0,60	18,0	12,80	6,0	12,0	6,0	0,33	18,0
3,00	11,0	20,0	11,0	0,60	18,0	13,00	6,0	11,0	6,0	0,33	18,0
3,20	12,0	21,0	12,0	0,67	18,0	13,20	6,0	11,0	6,0		15,0
3,40		24,0	14,0	0,07			0,0	11,0		0,40	15,0
3,40	14,0	24,0	14,0	0,87	16,0	13,40	6,0	12,0	6,0	0,40	15,0
3,60	18,0	31,0	18,0	1,07	17,0	13,60	6,0	12,0	6,0	0,13	45,0
3,80	21,0	37,0	21,0	1,13	19,0	13,80	12,0	14,0	12,0	0,40	30,0
4,00	23,0	40,0	23,0	1,07	22,0	14,00	6,0	12,0	6,0	0,40	15,0
4,20	21,0	37,0	21,0	1,20	17,0	14,20	6,0	12,0	6,0	0,40	15,0
4,40	20,0	38,0	20,0	1,13	18,0	14,40	6,0	12,0	6,0	0,40	15,0
4,60	20,0	37,0	20,0	1,13	18,0	14,60	7,0	13,0	7,0	0,40	17,0
4,80	20,0	37,0	20,0	1,00	20,0	14,80	8,0	14.0	8.0	0,40	20,0
5,00	13,0	28,0	13,0	0,40	32,0	15,00	8,0	14,0	8,0	0.40	20,0
5,20	8,0	14,0	8,0	0,27	30,0	15,20	6,0	12,0	6,0	0,27	22,0
5,40	9,0	13,0	9,0	0,33	27,0	15,40	6,0	10,0	6,0	0,33	18,0
5,60	6,0	11,0	6,0	0,33	18,0	15,60	6,0	11,0	6,0	0,33	18,0
5,80	7,0	12,0	7,0	0,27	26,0	15,80	7,0	12,0	7,0	0,33	21,0
6,00	8,0	12,0	8,0	0,27	30,0	16,00	6,0	11,0	6,0	0,33	18,0
6,20	9,0	13,0	9,0	0,27	34,0	16,20	0,0	11,0	6,0		
6,40	6,0	10,0	6,0	0,27			6,0	11,0	6,0	0,40	15,0
0,40	5,0	10,0	5,0	0,27	22,0	16,40	6,0	12,0	6,0	0,33	18,0
6,60	5,0	9,0	5,0	0,27	19,0	16,60	6,0	11,0	6,0	0,27	22,0
6,80	5,0	9,0	5,0	0,13	37,0	16,80	8,0	12,0	8,0	0,60	13,0
7,00	7,0	9,0	7,0	0,27	26,0	17,00	10,0	19,0	10,0	0,47	21,0
7,20	4,0	8,0	4,0	0,13	30,0	17,20	7,0	14,0	7,0	0,27	26,0
7,40	6,0	8,0	6,0	0,20	30,0	17,40	7,0	11,0	7,0	0,33	21,0
7,60	4,0	7,0	4,0	0,20	20,0	17,60	30,0	35,0	30,0	0,67	45,0
7,80	4,0	7,0	4,0	0,20	20,0	17,80	11,0	21.0	11,0	0,73	15,0
8,00	4,0	7,0	4,0	0,20	20,0	18,00	26,0	37,0	26,0	1,53	17,0
8,20	4,0	7,0	4,0	0,20	20,0	18,20	10,0	33,0	10,0	0,67	15,0
8,40	3,0	6,0	3,0	0,13	22,0	18,40	40,0	50,0	40,0	1,20	33,0
8,60	10,0	12,0	10,0	0,20	50,0	18,60	14,0	32,0	14,0	0,87	16,0
8,80	5,0	8,0	5,0	0,40	12,0	18,80	9,0	22,0	9,0	0,27	34,0
9,00	6,0	12,0	6,0	0,53	11,0	19,00		20,0			
0.20	0,0						16,0	20,0	16,0	0,73	22,0
9,20	8,0	16,0	8,0	0,60	13,0	19,20	20,0	31,0	20,0	0,67	30,0
9,40	10,0	19,0	10,0	0,53	19,0	19,40	39,0	49,0	39,0	0,47	84,0
9,60	8,0	16,0	8,0	0,47	17,0	19,60	18,0	25,0	18,0	0,93	19,0
9,80	7,0	14,0	7,0	0,27	26,0	19,80	12,0	26,0	12,0	0,80	15,0
10,00	12,0	16,0	12,0	0,60	20,0	20,00	12,0	24.0	12,0		

PENETROMETRO STATICO tipo da 16 t - (senza anello allargatore) COSTANTE DI TRASFORMAZIONE Ct = 10 - Velocità avanzamento punta 2 cm/s - punta meccanica tipo Begemann ø = 35.7 mm (area punta 10 cm² - apertura 60°) - manicotto laterale (superficie 150 cm²)

CPT 9

2.0105-035

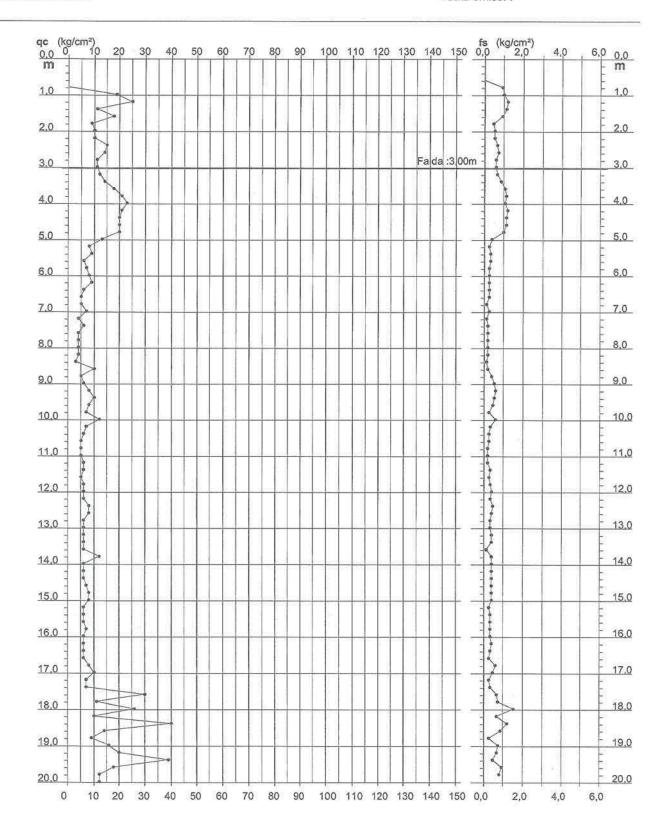
- committente :

lavoro :località :

Costruzione Capannone

Bientina (PI) - Via Gofi di Pecora

- assist. cantiere :


- data : - quota inizio :

io :

- falda :

- data emiss. :

14/08/1998 Piano Campagna 3,00 da quota inizio

PROVA PENETROMETRICA STATICA VALUTAZIONI LITOLOGICHE

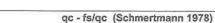
CPT 9

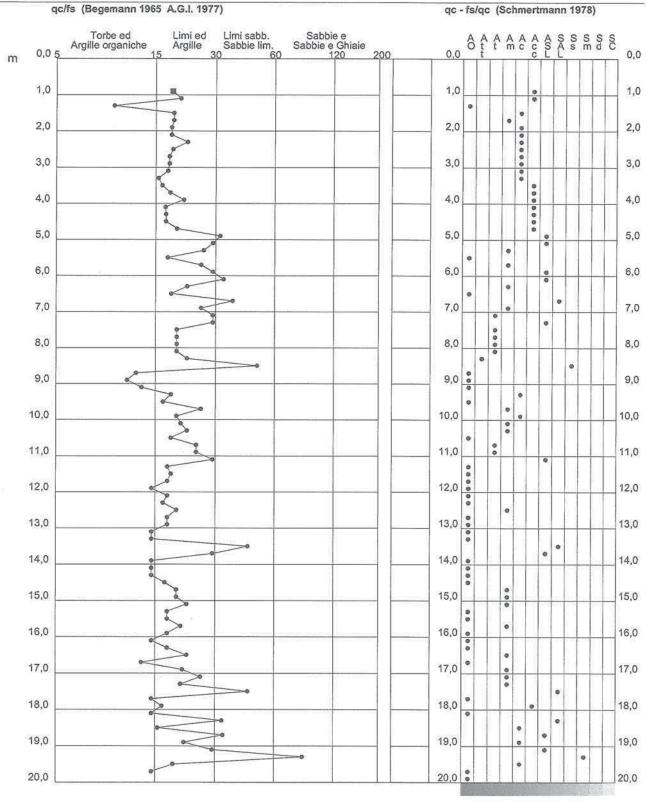
2.0105-035

- committente :

- lavoro : - località : Costruzione Capannone

Bientina (PI) - Via Gofi di Pecora


- assist. cantiere:


- data:

14/08/1998

- quota inizio: - falda :

Piano Campagna 3,00 da quota inizio

CPT 9

2.0105-035

- committente :

- lavoro: - località :

Costruzione Capannone Bientina (PI) - Via Gofi di Pecora

- assist. cantiere :

- data : - quota inizio : - falda :

- data emiss. :

14/08/1998 Piano Campagna 3,00 da quota inizio

	-			100	Ш	I NAT	TURK	¢þEs	SIVA	ШШ	ШШ			NATI	RA	GRA	NUL	ARET			П
Prof. m	qc kg/cm	qc/fs (-)	Natura Litol.	a Y' t/m³	p'vo kg/cm²	Cu kg/cm²	OCR (-)	Eu50 kg/c	Eu25 m²	Mo kg/cm²	Dr %	ø1s (9	ø2s (°)	ø3s (°)	ø4s (°)	ødm (°)	ømy (۱)	Amax/g (-)	E'50 kg/cn	E'25 n² kg/cn	Mo n²
0,20 0,40	-	-	??? ???	1,85 1,85	0,04	Ξ	_	1	Ξ	4	Ξ		:	3	Ξ			7	-	:	
0,60 0,80 1,00	19	19	??? ??? 2////	1,85 1,85 1,85	0,11 0,15 0,19	0,78	37,7	132	198	58	1		=	-	_	2	2		7		I
1,20 1,40 1,60	25 11 18	21 10 19	4/:/: 2//// 2////	1,85 1,85 1,85	0,22	0,91	36,6 15,6	155 91	232 137	75 42	61	37	39	41	43	38	28	0,133	42	63	75 —
1,80 2,00 2,20	10	19 19	2///	1,85 1,85 1,85	0,30 0,33 0,37	0,75 0,45 0,50	20,1 9,1 9,1	128 79 88	191 119 132	56 38 40	-	-	=	2	-	**		=		-	
2,20 2,40 2,60	10 15 14	19 22 19	2//// 2//// 2////	1,85 1,85 1,85	0,41 0,44 0,48	0,50 0,67 0,64	8,1 10,4 8,9	97 113 114	146 170 171	40 50 48			-	-	Ξ	-	1	-		-	22
2,80 3,00	11	18 18	2/// 2////	1,85 0,91	0,52	0,54	6,6	133	200 210	42 42	<u> </u>	2	=	=	-	=	=	2	_		
3,20 3,40 3,60	12 14 18	18 16 17	2/// 2//// 2////	0,92 0,94 0,98	0,55 0,57 0,59	0,57 0,64 0,75	6,5 7,2 8,4	143 143 141	214 214 211	45 48 56	_		Ξ.	5	-		122		=		
3,80 4,00 4,20	21 23 21	19 22	4/:/:	0,93 0,94	0,61	0,82	9,1	145 151	218 226	63 69	30 33	32 33	35 35	38 38	40 41	31 31	27 28	0,059 0,064	35 38	53 58	63 69
4,40 4,60	20 20	17 18 18	4/:/: 4/:/: 4/:/:	0,93 0,93 0,93	0,65 0,67 0,69	0,82 0,80 0,80	8,5 7,9 7,6	154 161 167	231 241 251	63 60 60	29 27 26	32 32 32	35 34 34	37 37 37	40 40 40	31 30 30	27 27 27	0,056 0,051 0,049	35 33 33	53 50 50	63 60 60
4,80 5,00 5,20	20 13 8	20 32 30	4/:/: 4/:/: 4/:/:	0,93 0,88 0,84	0,70 0,72 0,74	0,80 0,60 0,40	7,4 5,0 2,9	174 199 200	260 299 300	60 47 35	25 10	32 29 28	34 32	37 35	40 39	30 27 25	27 27 26	0,048	33 22	50 33	60 39
5,40 5,60	9	27 18	2////	0,88	0,76	0,45	3,3 1,9	211 169	317 254	38 29	-		31	35	38		26	=	13	20	24
5,80 6,00 6,20	8 9	26 30 34	2//// 4/:/: 4/:/:	0,84 0,84 0,85	0,79 0,81 0,82	0,35 0,40 0,45	2,3 2,6 3,0	191 209 224	286 313 336	32 35 38	=	28 28	31 31	35 35	38 38	25 25	26 26		13 15	20 23	24 27—
6,40 6,60 6,80	6 5 5	22 19 37	2//// 2//// 4/:/:	0,82 0,80 0,81	0,84 0,86 0,87	0,30 0,25 0,25	1,7	172 147 148	258 221 221	29 25 25	=	**	**	-			-	120 170	***	-	
7,00	7	26 30	2////	0,84	0,89	0,35	1,3 2,0 1,0	197 120	295 180	32 20	Ξ	28 28	31	35	38	25	25 25	1	8 - 7	***	15 12 —
7,40 7,60 7,80	6 4 4	30 20 20	4/:/: 2//// 2////	0,82 0,78 0,78	0,92 0,94 0,95	0,30 0,20 0,20	1,5 0,9 0,9	174 120 120	262 180 180	29 20 20	Ξ	28	31	35	38	25	26	13	10		18
8,00 8,20 8,40	4 4 3	20 20 22	2//// 2//// 2////	0,78	0,97	0,20	0,9	120 120	180 180	20 20	7	#		-		:	-	#	=	<u> </u>	<u> </u>
8,60 8.80	10	50 12	4/:/:	0,76 0,86 0,46	1,00 1,02 1,03	0,15 0,50 0,25	0,6 2,6 1,1	90 262 32	135 393 49	15 40 8	-	28	31	35	38	25	26	=	17	25	30
9,00 9,20 9,40	6 8 10	11 13 19	1*** 2//// 2////	0,46 0,86 0,90	1,03 1,05 1,07	0,30 0,40 0,50	1,3 1,9 2,4	38 227 267	57 340 401	9 35 40	=	 :	-			-	-	:	-		<u>:</u> —
9,60 9,80	8	17 26	2////	0,86	1,09	0,40	1,8 1,5	228 204	342 306	35 32			_			-	=	=	=		-
10,00 10,20 10,40	12 7 6	20 21 22	2//// 2//// 2////	0,92 0,84 0,82	1,12 1,14 1,16	0,57 0,35 0,30	2,7 1,4 1,2	295 205 179	308 268	45 32 29	-	2	_	-	<u></u>		-	=	=		<u>-</u> -
10,60 10,80 11,00	5 5	19 25 25	2/// 2//// 2////	0,80	1,17	0,25	0,9	150 150	225 225	25 25	-	===	223	220	-	-	-	-	-	-	
11,20 11,40	6	30 18	4/:/: 2////	0,80 0,82 0,82	1,20 1,22 1,24	0,25 0,30 0,30	0,9 1,1 1,1	150 179 179	225 269 269	25 29 29		28	31	35	38	25	26		10	15	18 —
11,60 11,80 12,00	5 6 6	19 18 15	2////	0,80 0,82 0,46	1,25 1,27 1,28	0,25 0,30 0,30	0,8 1,0 1,0	150 180 39	225 270 58	25 29 9		<u> </u>	-	2	=		-	2 0	2	2	
12,20 12,40	6	18 17	2////	0,82	1,28 1,29 1,31	0,30	1.0	180 235	270 352	29 35	-			\$6 81	-	2	2	23() 37()	=	MI F	<u> </u>
12,60 12,80 13,00	8 6 6	20 18 18	2//// 2//// 2////	0,86 0,82 0,82	1,33 1,34 1,36	0,40 0,30 0,30	1,4 1,0 0,9	235 180 180	352 270 270	35 29 29	11		22)		Ξ	-	-			2	-
13,20 13,40 13,60	6	15 15 45	1*** 4/:/:	0,46 0,46 0,82	1,36 1,37 1,38 1,40	0,30 0,30 0,30	0,9 0,9 0,9	39 39 180	59 59 270	9 9 29	Ξ	28	24							-	— .:
13,80 14,00	12	30 15	4/:/:	0,88	1,41	0,57	2,0	319 39	479 59	45 9	2	28	31	35 35 	38 38	25 25 	26 26		20		18 36
14,20 14,40 14,60	6 7	15 15 17	1***	0,46 0,46 0,84	1,43 1,44 1,46	0,30 0,30 0,35	0,9 0,9 1,1	39 39 209	59 59 314	9 9 32	Ē	E :	22	=	5	-	-		E	**	=
14,80 15,00 15,20	8 8	20 20 22	2//// 2//// 2////	0,86	1,47	0,40	1,2 1,2	237 238	356 356	35 35	Ξ	Ξ.		33	至()		-	1		-	=
15,40 15,60	6 6 7	18 18	2///	0,82 0,82 0,82	1,51 1,52 1,54 1,56	0,30 0,30 0,30	0,8 0,8 0,8	180 180 180	270 270 270	29 29 29	-2		3	Ξ	<u> </u>	-	=	2	1		_
15,80 16,00 16,20	7 6 6	21 18 15	2////	0,84 0,82 0,46	1,56 1,57 1,58	0,35 0,30 0,30	1,0 0,8 0,8	210 180 39	315 270 59	32 29 9	2	Ξ	2	=	Z	**	-	12		-	-
16,40 16,60	6 6 8	18 22	2///	0,82	1,60	0,30	0,8	180 180	270 270	29 29	12		1	Ξ.		2	Ξ	1	Ξ	=	=
16,80 17,00 17,20	8 10 7 7	13 21 26	2/// 2//// 2////	0,86 0,90 0,84	1,63 1,65 1,67	0,40 0,50 0,35	1,1 1,4 0,9	239 293 210	359 440 315	35 40 32	100	Ē.;	22			<u></u>	-	7	***	-	Ξ_
17,40 17,60	30	21 45	2//// 3::::	0,84	1,69	0,35	0,9	210	315	32	18	30	33	36	39	27	29	0,034	 50		- 90
17,80 18,00 18,20	11 26 10	15 17 15	2//// 4/:/: 2////	0,91 0,95 0,90	1,72 1,74 1,76	0,54 0,93 0,50	1,5 2,9 1,3	314 468 295	471 702 443	42 78 40	12	30	33	36	39	26	28	0,024	43	**	78
18,40	40 14 9	33 16 34	3::::	0,90	1,76 1,78 1,79	0,64	1,7	365	548	48	26	32	34	37	40	29	30	0,051	67	100 1	20
18,80 19,00 19,20	16 20 39	22 30	4/:/: 2//// 4/:/:	0,85 0,96 0,93	1,81 1,83 1,85	0,45 0,70 0,80	1,1 1,9 2,2	269 394 439	403 591 658	38 52 60	2	28	31	35 35	38	25 25	26	0,004	15	**	27 50 —
19,40 19,60 19,80	39 18 12	84 19 15	3:::: 2//// 2////	0,90 0,98 0,92	1,87 1,89 1,91	0,75 0,57	2,0	421 336	631 504	56 45	24	31	34	37	40	28	30	0,046	65	98 1	17
20,00	12		2////	0,92	1,92	0,57	1,4	336	504	45	0.55	::	/155	1.77	=	77	**	350	155	:## :##	-

PROVA PENETROMETRICA STATICA LETTURE DI CAMPAGNA / VALORI DI RESISTENZA

CPT 10

2.0105-035

- committente :

- assist. cantiere :

- lavoro: - località : Costruzione Capannone

Bientina (PI) - Via Gofi di Pecora

- data :

13/08/1998

- quota inizio : - falda :

Piano Campagna Falda non rilevata

- data emiss. :

prf	L1	L2	qc	fs	qc/fs	prf	L1	L2	qc	fs	qc/fs
m	т.	(#)	Kg/cm ²	Kg/cm ²	-	m	×		Kg/cm ²	Kg/cm ²	- 9
0,20	-		22	2000000	10000	10,20	6,0	11.0	6,0	0,33	18,0
0,40	*****			0,87		10,40	6,0	11,0	6,0	0,33	18,0
0,60	23,0	36,0	23,0	0,87	27,0	10,60	6,0	11,0	6,0	0,20	30,0
										0,20	
0,80	27,0	40,0	27,0	1,60	17,0	10,80	7,0	10,0	7,0	0,27	26,0
1,00	38,0	62,0	38,0	0,87	44,0	11,00	11,0	15,0	11,0	0,33	33,0
1,20	48,0	61,0	48,0	2,07	23,0	11,20	6,0	11,0	6,0	0,40	15,0
1,40	29,0	60,0	29,0	1,40	21,0	11,40	7,0	13,0	7,0	0,33	21,0
1,60	19,0	40,0	19,0	1,27	15,0	11,60	8,0	13,0	8,0	0,40	20,0
1,80	16,0	35,0	16,0	1,00	16,0	11,80	6,0	12,0	6,0	0,33	18,0
2,00	14,0	29,0	14,0	0,73	19,0	12,00	6,0	11,0	6,0	0,33	18,0
2,20	15,0	26,0	15,0	0,87	17.0	12,20	6,0	11,0	6,0	0,33	18,0
2,40	15,0	28,0	15,0	0,60	25,0			12,0	7.0		
2,40		20,0		0,00		12,40	7,0	12,0	7,0	0,33	21,0
2,60	19,0	28,0	19,0	0,87	22,0	12,60	6,0	11,0	6,0	0,40	15,0
2,80	17,0	30,0	17,0	0,73	23,0	12,80	6,0	12,0	6,0	0,40	15,0
3,00	17,0	28,0	17,0	0,60	28,0	13,00	6,0	12,0	6,0	0,60	10,0
3,20	14,0	23,0	14,0	0,67	21,0	13,20	7,0	16,0	7,0	0,43	16,0
3,40	13,0	23,0	13,0	0,60	22,0	13,40	7,5	14,0	8,0	0,37	22,0
3,60	13,0	22,0	13,0	0,60	22,0	13,60	7,5	13,0	8,0	0,40	20,0
3,80	17,0	26,0	17,0	0,80	21,0	13,80	6,0	12,0	6,0	0,47	13,0
4,00	20,0	32,0	20,0	0,80	25,0	14,00	7,0	14,0	7,0	0,40	17,0
4,20	22,0	34,0	22,0	1,07	21,0	14,20	8,0	14,0	8,0		22,0
4,40		39,0	22,0				0,0	14,0	0,0	0,37	22,0
	23,0		23,0	1,00	23,0	14,40	8,5	14,0	8,0	0,20	40,0
4,60	22,0	37,0	22,0	1,47	15,0	14,60	13,0	16,0	13,0	0,27	49,0
4,80	21,0	43,0	21,0	1,27	17,0	14,80	10,0	14,0	10,0	0,33	30,0
5,00	23,0	42,0	23,0	1,47	16,0	15,00	20,0	25,0	20,0	0,27	75,0
5,20	21,0	43,0	21,0	1,20	17,0	15,20	12,0	16,0	12,0	1,20	10,0
5,40	19,0	37,0	19,0	1,13	17,0	15,40	57,0	75,0	57,0	1,73	33,0
5,60	11,0	28,0	11,0	0,40	27,0	15.60	36,0	62,0	36,0	1,07	34,0
5,80	11,0	17,0	11,0	0.40	27,0	15,80	35,0	51,0	35,0	0,80	44,0
6,00	9,0	15,0	9,0	0,47	19,0	16,00	30,0	42,0	30,0	1,20	25,0
6,20	11,0	18,0	11,0	0,60	18,0	16,20	31,0	49,0	31,0	0,93	33,0
6,40	13,0	22,0	13,0	0,80	16,0	16,40	33,0	47,0	33,0	1,07	31,0
6,60	10.0	22,0		0,40							
			10,0		25,0	16,60	60,0	76,0	60,0	0,13	450,0
6,80	10,0	16,0	10,0	0,67	15,0	16,80	7,0	9,0	7,0	0,67	10,0
7,00	12,0	22,0	12,0	1,27	9,0	17,00	80,0	90,0	80,0	2,87	28,0
7,20	12,0	31,0	12,0	0,33	36,0	17,20	77,0	120,0	77,0	1,33	58,0
7,40	8,0	13,0	8,0	0,33	24,0	17,40	120,0	140,0	120,0	0,87	138,0
7,60	5,0	10,0	5,0	0,27	19,0	17,60	37,0	50,0	37,0	0,87	43,0
7,80	6,0	10,0	6,0	0,33	18,0	17,80	11,0	24,0	11,0	0,80	14,0
8,00	5,0	10,0	5,0	0.33	15,0	18,00	11,0	23,0	11,0	0,60	18,0
8,20	5,0	10,0	5,0	0,40	12,0	18,20	11,0	20,0	11,0	0,67	16,0
8,40	11,0	17,0	11,0	0,40	27,0	18,40	8,0	18,0	8,0	0,80	10,0
8,60	11.0	17,0	11,0	0,47	24,0	18,60	12,0	24,0	12,0	0,73	16,0
8,80	11,0	18,0	11,0	0,47	24,0		15,0	26,0		0,73	
		10,0	11,0			18,80			15,0		19,0
9,00	6,0	13,0	6,0	0,20	30,0	19,00	13,0	25,0	13,0	0,87	15,0
9,20	12,0	15,0	12,0	0,27	45,0	19,20	10,0	23,0	10,0	0,53	19,0
9,40	7,0	11,0	7,0	0,33	21,0	19,40	9,0	17,0	9,0	0,47	19,0
9,60	12,0	17,0	12,0	0,47	26,0	19,60	8,0	15,0	8,0	0,73	11,0
9,80	7,0	14,0	7,0	0,40	17,0	19,80	15,0	26,0	15,0	0,67	22,0
10,00	6,0	12,0	6,0	0,33	18,0	20,00	12,0	22,0	12,0		****

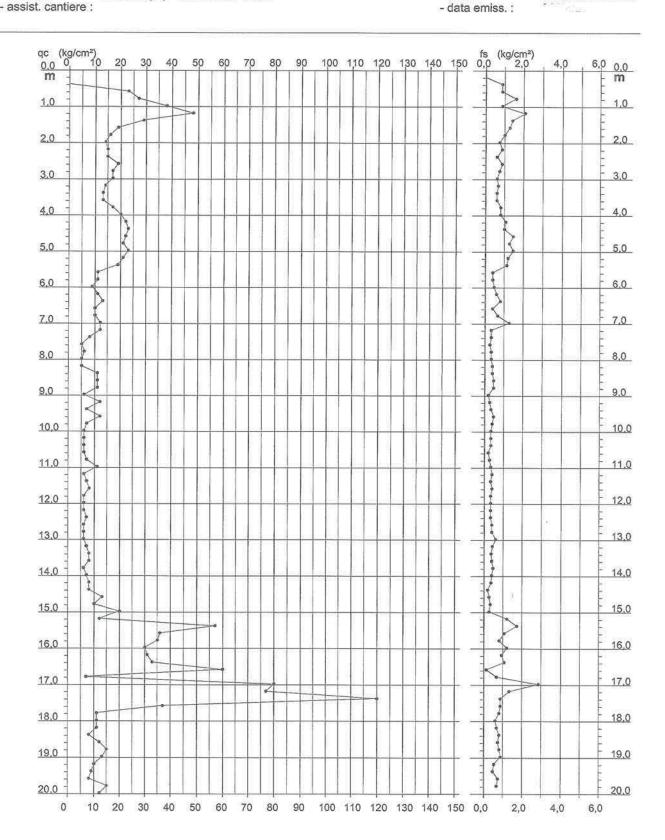
⁻ PENETROMETRO STATICO tipo da 16 t - (senza anello allargatore) - - COSTANTE DI TRASFORMAZIONE Ct = 10 - Velocità avanzamento punta 2 cm/s - punta meccanica tipo Begemann ø = 35.7 mm (area punta 10 cm² - apertura 60°) - manicotto laterale (superficie 150 cm²)

CPT 10

2.0105-035

- committente :

- lavoro: - località : Costruzione Capannone


- assist. cantiere :

Bientina (PI) - Via Gofi di Pecora

- data : - quota inizio:

- falda :

13/08/1998 Piano Campagna Falda non rilevata

PROVA PENETROMETRICA STATICA VALUTAZIONI LITOLOGICHE

CPT 10

2.0105-035

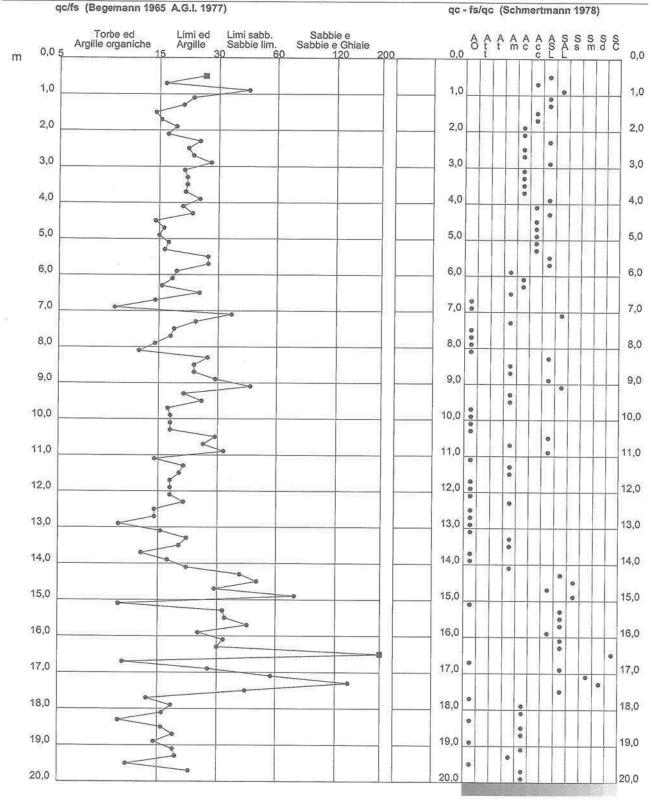
- committente :

lavoro :
località :

Costruzione Capannone

Bientina (PI) - Via Gofi di Pecora

- assist. cantiere :


- data :

- quota inizio :

quota inizifalda :

13/08/1998 Piano Campagna

Falda non rilevata

CPT 10

2.0105-035

- committente :

- lavoro: - località: Costruzione Capannone

Bientina (PI) - Via Gofi di Pecora

- assist. cantiere :

- data :

- quota inizio: - falda :

13/08/1998 Piano Campagna Falda non rilevata

					$\Pi\Pi$	INA	TURA	COES	SIVA.					VAT	RA	GRA	NΨL	ARE	ПП		
Prof m	qc kg/cm	qc/fs (-)	Natura Litol.	Y' Vm³	p'vo kg/cm²	Cu kg/cm²	OCR (-)	Eu50 kg/c	Eu25 m²	Mo kg/cm²	Dr %	ø1s (9	ø2s (°)	ø3s (9	ø4s (9	ødm (°)	ømy (°)	Amax/g (-)	E'50 kg/cm	E'25 2 kg/c	Mo cm²
m 0,20 0,40 0,60 0,80 1,20 1,40 1,60 2,00 2,40 2,60 3,20 3,40 4,40 4,50 4,50 5,80 6,00 6,20 6,60 6,60 6,60 6,60 6,80 7,00 7,40 7,80 8,80 8,80 9,80 9,80 10,00 11,20 11,40 11,60 11,80 11,80 11,80 11,90	kg/cm37.88.42916.1455917.71413317.022322191111.911310101212.85655511111612.712.7666667.88667.88667.88667.88667.88667.88667.88667.88667.8867.8867.8877.0371111.812533333336.7877.0371111.8125333333333333333333333333333333333333	(+)	Litol. 7?? 4/::: 4/::: 4/::: 4/::: 4/::: 2///// 2//// 2//// 2//// 2//// 2//// 2//// 2//// 2//// 2//// 2///// 2///// 2///// 2///// 2///// 2///// 2//////	Vm 1,855 1,8	kg/cm² 0.007 0.011 0.00 0.00 0.00 0.00 0.00 0.	kg/cm²	(-)1.19.1139.84.64.445.790.65.590.827.82.68.60.47.103237.97.77.667.685.86.66.67.267.855.56.55.66.64.56.60.77.391.61.411.66.64.787.55.47.00.00.00.00.00.00.00.00.00.00.00.00.00	148 161 172 167 1318 108 118 108 118 108 118 108 118 108 118 108 118 11	m²	kg /cm²									E'50 kg/cm	\$\frac{1}{2}\text{ kg/c}\$ \$\frac{1}{2}	
20,00	12		2///	1,85	3,70	0,57	0,6	343	514	45	125	99.3	80		***	**	*			-	=

di Benedetti & Carmignani

Loc. Batanelli, 25 - 55010 BADIA POZZEVERI (LU)

Rifer. 35-16

PROVA PENETROMETRICA STATICA LETTURE DI CAMPAGNA / VALORI DI RESISTENZA

CPT 1 2.01PG05-077

Falegnameria Incontrato - committente : - lavoro Realizzazione di tettoia via Gofi di Pecora - Bientina località - note:

- data : 11/07/2016 - quota inizio : Piano Campagna

- prof. falda : Falda non rilevata

- pagina :

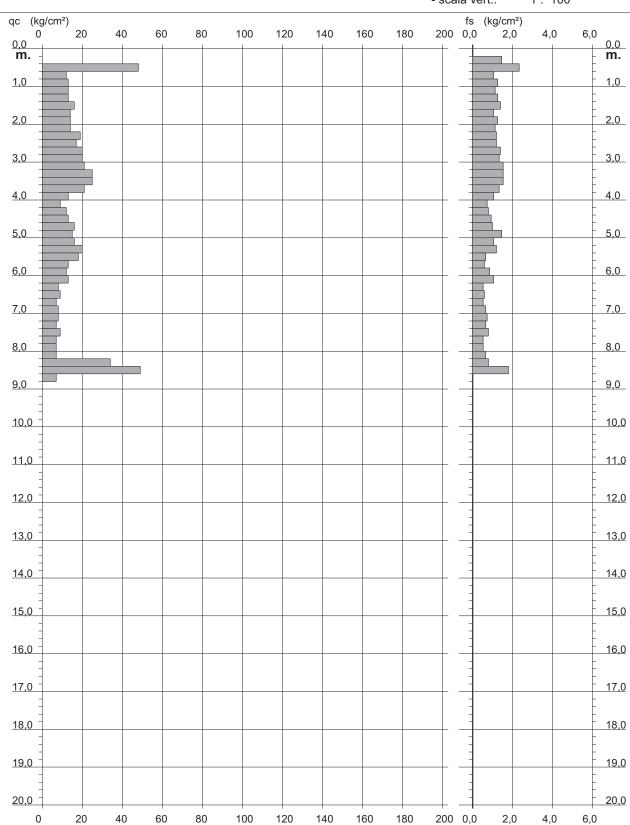
Prof. m	Letture d punta	i campagn laterale	a qc kg	fs /cm²	qc/fs	Prof. m	Letture o	di campag lateral		fs kg/cm²	qc/fs
0,20 0,40 0,60 0,80 1,00 1,20 1,40	48,0 12,0 13,0 13,0 13,0	70,0 47,0 29,0 32,0 30,0	48,0 12,0 13,0 13,0 13,0	1,47 2,33 1,07 1,27 1,13 1,27	 21,0 11,0 10,0 11,0 10,0	4,60 4,80 5,00 5,20 5,40 5,60 5,80	13,0 16,0 15,0 16,0 20,0 18,0 13,0	25,0 30,0 30,0 38,0 36,0 36,0 23,0	13,0 16,0 15,0 16,0 20,0 18,0 13,0	0,93 1,00 1,47 1,07 1,20 0,67 0,60	14,0 16,0 10,0 15,0 17,0 27,0 22,0
1,60 1,80 2,00 2,20 2, 4 0 2,60	16,0 14,0 14,0 14,0 19,0 17,0	35,0 35,0 30,0 33,0 36,0 35,0	16,0 14,0 14,0 14,0 19,0 17,0	1,40 1,07 1,27 1,13 1,20 1,20	11,0 13,0 11,0 12,0 16,0 14,0	6,00 6,20 6,40 6,60 6,80 7,00	12,0 13,0 8,0 9,0 7,0 8,0	21,0 26,0 24,0 17,0 16,0 16,0	12,0 13,0 8,0 9,0 7,0 8,0	0,87 1,07 0,53 0,60 0,53 0,67	14,0 12,0 15,0 15,0 13,0 12,0
2,80 3,00 3,20 3,40 3,60 3,80 4,00 4,20 4,40	20,0 20,0 21,0 25,0 25,0 21,0 13,0 9,0 12,0	38,0 41,0 41,0 48,0 48,0 44,0 33,0 25,0 23,0	20,0 20,0 21,0 25,0 25,0 21,0 13,0 9,0 12,0	1,40 1,33 1,53 1,53 1,53 1,33 1,07 0,73 0,80	14,0 15,0 14,0 16,0 16,0 16,0 12,0 12,0 15,0	7,20 7,40 7,60 7,80 8,00 8,20 8,40 8,60 8,80	8,0 7,0 9,0 7,0 7,0 7,0 34,0 49,0 7,0	18,0 18,0 19,0 19,0 15,0 44,0 61,0 34,0	8,0 7,0 9,0 7,0 7,0 7,0 34,0 49,0 7,0	0,73 0,67 0,80 0,53 0,53 0,67 0,80 1,80	11,0 10,0 11,0 13,0 13,0 10,0 42,0 27,0

⁻ PENETROMETRO STATICO tipo PAGANI da 10/20t - COSTANTE DI TRASFORMAZIONE Ct = 10 - Velocità Avanzamento punta 2 cm/s - punta meccanica tipo Begemann ø = 35.7 mm (area punta 10 cm² - apertura 60°) - manicotto laterale (superficie 150 cm²)

Rifer. 35-16

Loc. Batanelli, 25 - 55010 BADIA POZZEVERI (LU)

PROVA PENETROMETRICA STATICA DIAGRAMMA DI RESISTENZA


CPT 1

2.01PG05-077

committente : Falegnameria Incontrato
 lavoro : Realizzazione di tettoia
 località : via Gofi di Pecora - Bientina

- data : - quota inizio : - prof. falda : 11/07/2016 Piano Campagna Falda non rilevata

- scala vert.: 1 : 100

Rifer. 35-16


Loc. Batanelli, 25 - 55010 BADIA POZZEVERI (LU)

PROVA PENETROMETRICA STATICA VALUTAZIONI LITOLOGICHE

CPT 1

2.01PG05-077

committente : Falegnameria Incontrato
 lavoro : Realizzazione di tettoia
 località : via Gofi di Pecora - Bientina
 data : 11/07/2016
 quota inizio : Piano Campagna
 prof. falda : Falda non rilevata

di Benedetti & Carmignani Loc. Batanelli, 25 - 55010 BADIA POZZEVERI (LU)

Rifer. 35-16

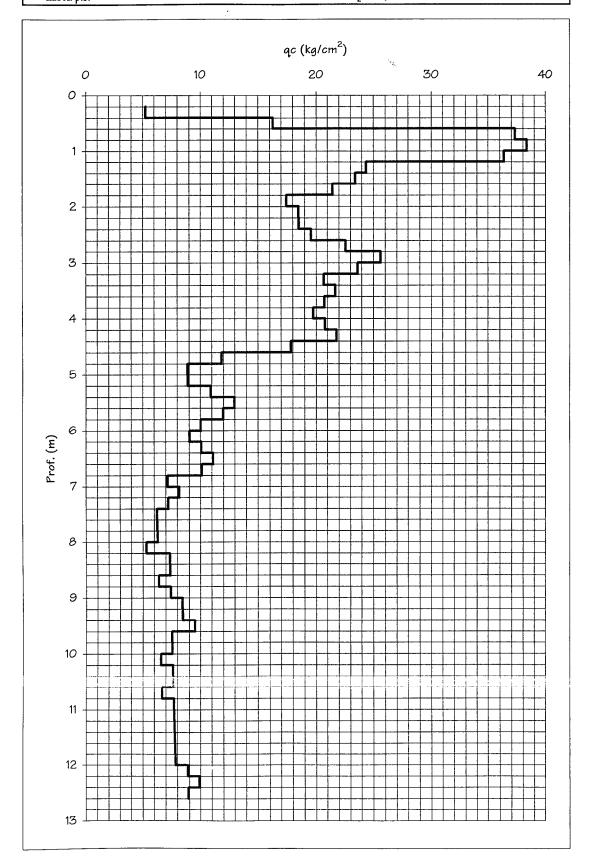
PROVA PENETROMETRICA STATICA **TABELLA PARAMETRI GEOTECNICI**

CPT 1

11/07/2016

Piano Campagna

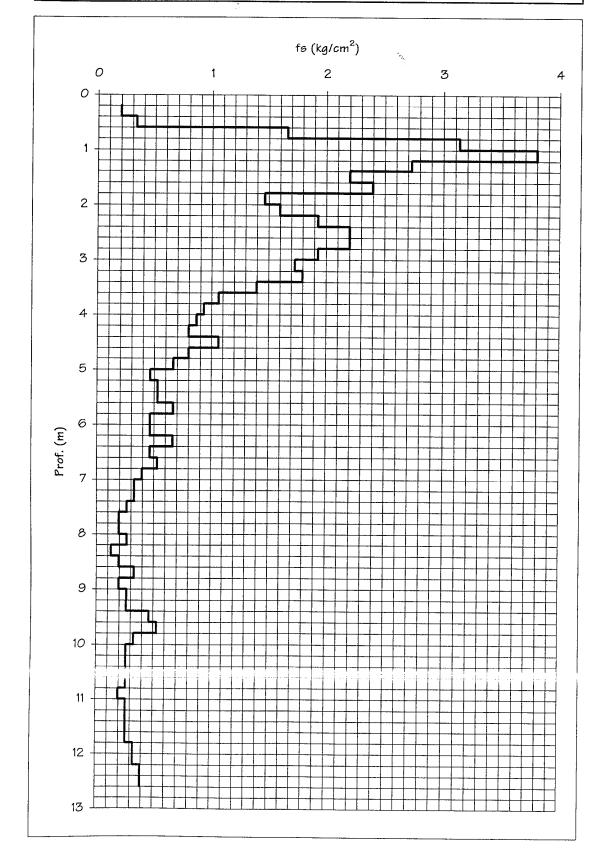
- data :


- quota inizio:

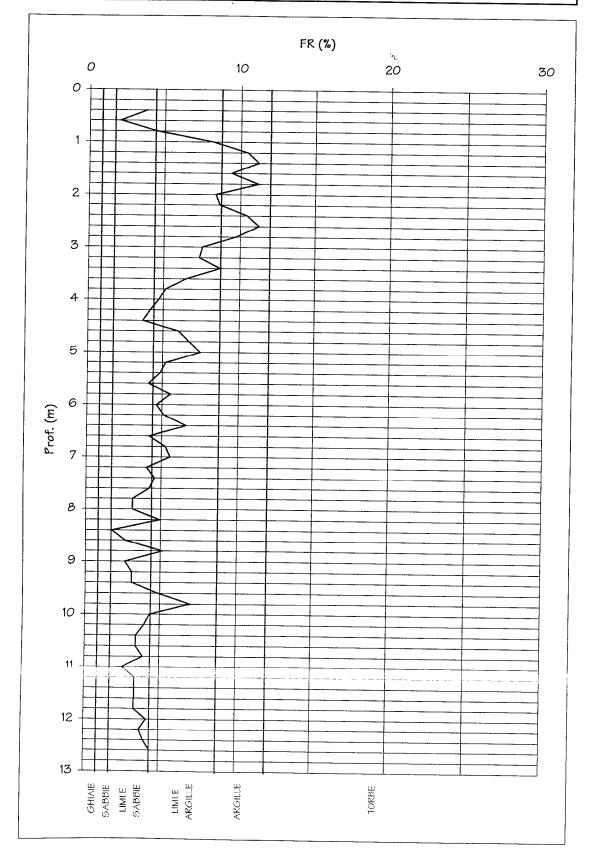
2.01PG05-077

- committente : Falegnameria Incontrato - lavoro : Realizzazione di tettoia - local

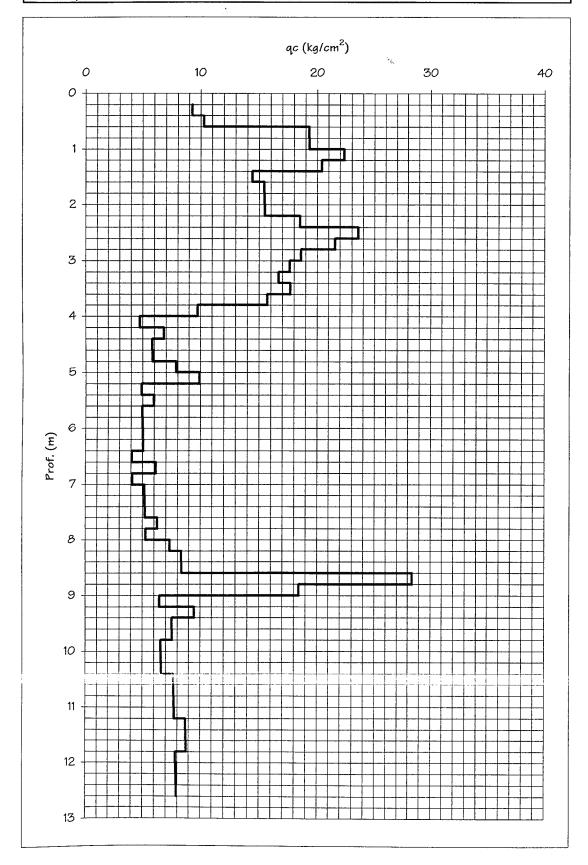
 località 	:	via	a Gofi	di P	ecora	- Bie	ntina							- pro	f. falo	da :		Falda	non	rileva	ata
- note :														- pag	gina :			1			
						NA	TURA	COES	SIVA					UTAN	IRA (3RAI	ΝUL	ARE	Ш		
Prof. m	qc kg/cm²	qc/fs (-)	Natura Litol.	Y' t/m³	d'vo kg/cm²	Cu kg/cm²	OCR (-)		Eu25	Mo kg/cm²	Dr %	ø1s (°)	ø2s (°)	ø3s (°)	ø4s (°)	ødm (°)	ømy (°)	Amax/g (-)	E'50 kg/	E'25 cm² kg	Mo g/cm²
0.20 0.40 0.60 0.80 1.20 1.40 1.60 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 4.20 4.40 4.60 5.80 6.00 6.20 6.40 6.60 6.80 7.20 7.40 7.60 7.80 8.20 8.40 8.60 8.80	48 123 133 164 144 149 177 220 125 139 121 138 143 143 143 144 149 177 177 177 177 177 177 177 177 177 17	21 11 10 11 11 11 12 11 11 11 11 11 11 11 11 11	??? ??? ?!!! 2!!!! 2!!!! 2!!!! 2!!!! 2!!!! 2!!!! 2!!!! 2!!!! 2!!!! 4!:: 4!::	1,85 1,85 1,85 1,85 1,85 1,85 1,85 1,85	0.04 0.11 0.119 0.226 0.30 0.337 0.444 0.488 0.555 0.637 0.748 0.859 0.936 1.000 1.004 1.017 1.118 1.226 1.333 1.337 1.341 1.444 1.452 1.553 1.63	1,60 0,60 0,60 0,60 0,60 0,70 0,64 0,64 0,64 0,72 0,80 0,80 0,91 0,91 0,91 0,60 0,57 0,60 0,67 0,60 0,67 0,60 0,67 0,60 0,60	99,9 34,6 6,0 11,1,1,0 11,1,0	272 972 103 103 118 108 108 108 1123 1236 136 145 2155 216 227 238 247 258 269 295 295 295 295 295 295 295 295 295 29	408 1466 154 154 177 162 162 162 188 184 204 204 203 238 337 331 337 337 341 356 403 347 357 367 385 67 385 68 68 68 68 68 68 68 68 68 68 68	144 45 47 47 47 52 48 48 48 54 60 63 75 75 52 60 63 47 45 47 47 47 47 47 47 47 48 48 48 48 48 48 48 48 48 48 48 49 49 49 49 49 49 49 49 49 49 49 49 49	100 	42	43 	45 	46 	43 	31	0,258	80 	120	1144


Comm.te S.IMPRE:S.I.T. srl Località Bientina (PI), loc. Prato Grande Quota p.c. - Data 29/11/2004 Prova nº 1 Prof. H₂O - 2,1 m

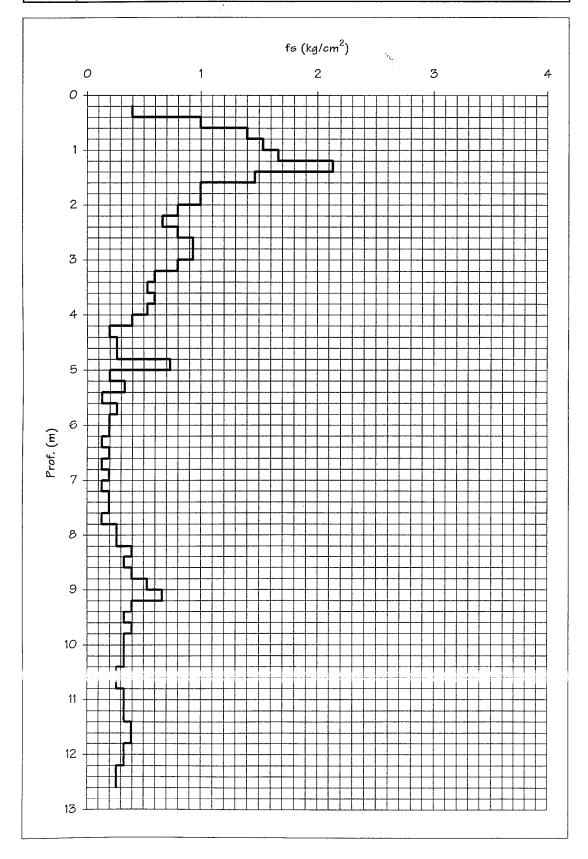
Comm.te S.IMPRE:S.I.T. erl


Località Bientina (PI), loc. Prato Grande
Quota p.c. -

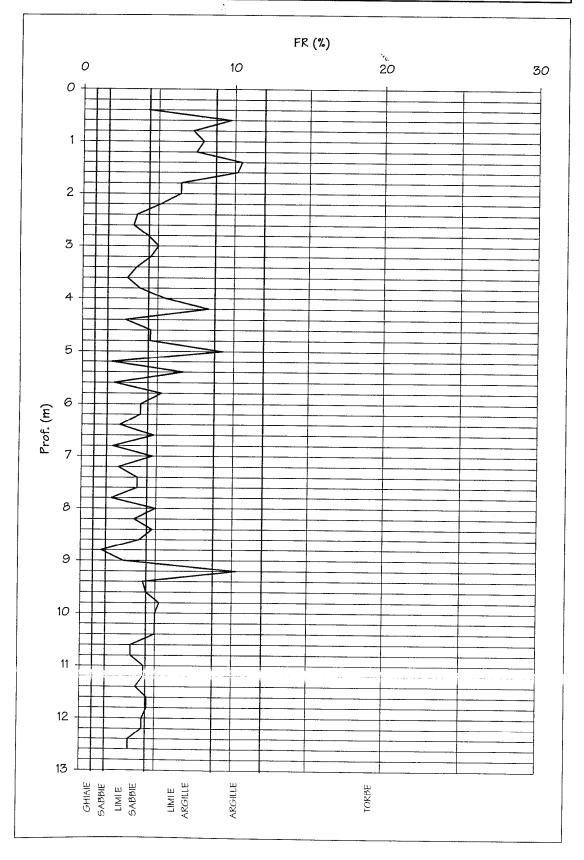
Data 29/11/2004 Prova nº 1 Prof. H₂O - 2,1 m



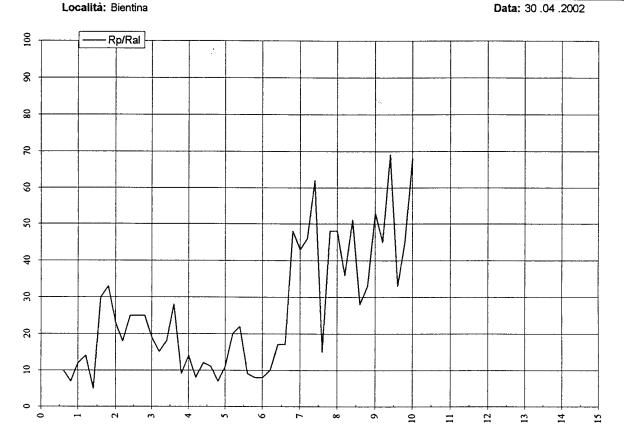
Comm.te S.IMPRE:S.I.T. srl Località Bientina (PI), loc. Prato Grande Quota p.c. -

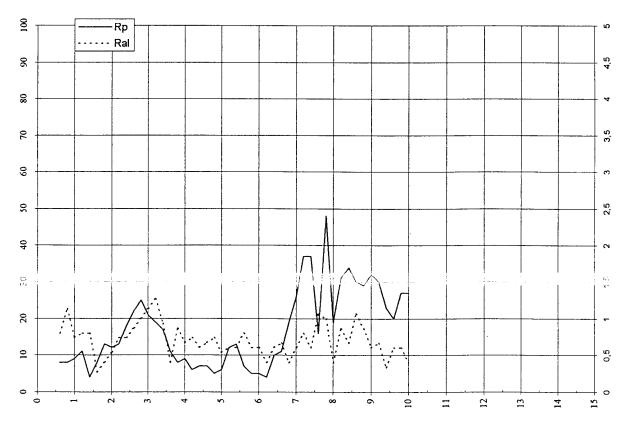

Prova nº 1
Prof. H₂O - 2,1 m

Comm.te S.IMPRE:S.I.T. srl Località Bientina (PI), loc. Prato Grande Quota p.c. - Data 29/11/2004 Prova n° 2 Prof. H₂O - 2,2 m



Comm.te S.IMPRE:S.I.T. srl Località Bientina (PI), loc. Prato Grande Quota p.c. Data 29/11/2004 Prova nº 2 Prof. H₂O - 2,2 m


Comm.te S.IMPRE:S.I.T. srl Località Bientina (PI), loc. Prato Grande Quota p.c. -


Data 29/11/2004 Prova n° 2 Prof. H₂O - 2,2 m

Committente: Paolo Incoronato Località: Bientina

Prova penetrometrica nº:

Via Einaudi, 1 - 57018 Vada (Livorno) Tel. 0586-787695 Cell. 0368-3839396

CPT113

Rifer. PU1-00

PROVA PENETROMETRICA STATICA LETTURE DI CAMPAGNA / VALORI DI RESISTENZA

CPT 1

2.010496-35

- committente :

- note :

Sig. Carlo Vignaroli

- lavoro : - località : Costruzione fienile

Puntone - Bientina (PI)

- data : - quota inizio :

14/04/00 Piano Campagna

- prof. falda :

1,20 m da quota inizio

- pagina :

 Prof. m	RP/10 kg/cm²	RL∕10 (kg/cm² kg	Qc fs g/cm² kg	Qc/fs /cm²		Prof. m	RP/10 kg/cm²	RL/10 kg/cm² k	Qc fs kg/cm² kg/	Qc/fs /cm²	;
m 0,20 0,40 0,60 0,80 1,20 1,40 1,60 2,20 2,40 2,60 2,80 3,00 3,20 3,40 3,60 3,80 4,00 4,20 4,40	5,0 5,0 5,5 5,0 7,0 8,0 6,5 7,5 6,5 4,0 3,5 4,5 5,5 6,5 7,0 9,0	8,5 11,0 10,5 13,0 14,5 16,0 14,5 11,5 8,0 10,0 11,5 12,0 12,5 15,5 18,0	7/cm² kg 10,0 10,0 11,0 16,0 16,0 13,0 15,0 13,0 6,0 7,0 9,0 11,0 11,0 12,0 13,0 14,0 18,0	7cm² 0,47 0,80 0,73 0,73 0,80 0,87 1,07 1,00 1,13 1,07 1,00 0,67 0,60 0,73 0,80 0,87 0,80 0,87 1,13 1,20 1,47	12,0 14,0 15,0 15,0 16,0 15,0 16,0 11,0 14,0 10,0 11,0 11,0 11,0 11,0 12,0 11,0 12,0 12	m 4,80 5,00 5,20 5,40 5,60 6,20 6,40 7,20 7,40 7,60 7,80 8,20 8,40 8,60 8,80 9,00	9,5 10,5 6,5 4,0 4,0 3,0 5,0 7,0 4,0 2,5 2,5 3,0 2,0 2,5 5,0 4,0 2,5 5,0 4,0 2,5 5,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2	8,0 (5,0 (8,0 (8,0 (8,0 (8,0 (8,0 (8,0 (8,0 (8	19,0 19,0 21,0 13,0 8,0 6,0 10,0 10,0 14,0 5,0 5,0 4,0 4,0 5,0 10,0 8,0 6,0 6,0 5,0	1,47 1,07 0,80 0,53 0,47 0,27 0,27 0,20 0,40 0,20 0,33 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27	13,0 20,0 16,0 15,0 17,0 15,0 22,0 37,0 50,0 35,0 40,0 15,0 19,0 22,0 20,0 15,0 19,0 19,0 19,0 17,0 18,0 22,0
4,60	10,0	21,0	20,0	1,47	14,0		•	,	•		

⁻ PENETROMETRO STATICO tipo GOUDA da 5 t - (con anello allargatore) -

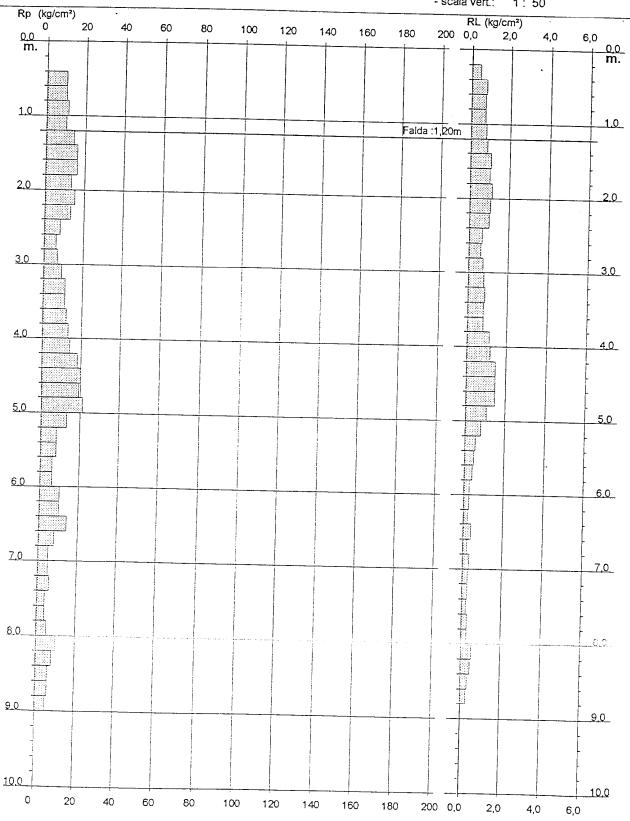
⁻ COSTANTE DI TRASFORMAZIONE Ct = 20 - Velocità Avanzamento punta 2 cm/s - punta meccanica tipo Begemann ø = 35.7 mm (area punta 10 cm² - apertura 60°)

⁻ manicotto laterale (superficie 150 cm²)

PROVA PENETROMETRICA STATICA DIAGRAMMA DI RESISTENZA

CPT C

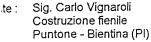
2.010496-35


- committente : - lavoro : - località :

Sig. Carlo Vignaroli Costruzione fienile Puntone - Bientina (PI)

- data : 从4104100 - quota inizio : Piano Campagna

- prof. falda: 1,20 m da quota inizio


- scala vert.: 1:50

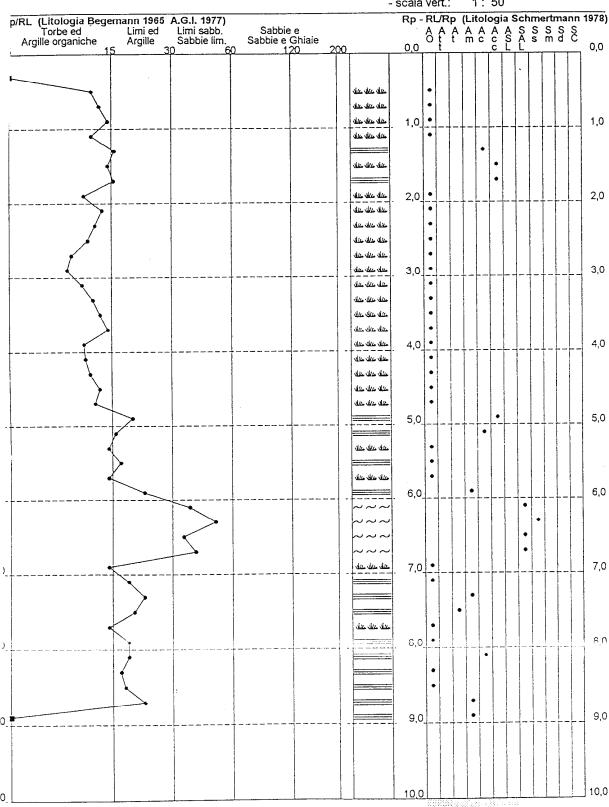
PROVA PENETROMETRICA STATICA VALUTAZIONI LITOLOGICHE

CPT C

2.010496-35

æ. <u>₹</u>. --

2336


3B 3B

3 23

3,0

14104100 - data: - quota inizio: Piano Campagna - prof. falda: 1,20 m da quota inizio

1:50 - scala vert.:

Dott. Geologo Graziano Graziani

Via Einaudi, 1 - 57018 Vada (Livorno) Tel. 0586-787695 Cell. 0368-3839396

CPT113

Rifer. PU1-00

PROVA PENETROMETRICA STATICA TABELLA PARAMETRI GEOTECNICI

CPT 1

2.010496-35

- committente :

Sig. Carlo Vignaroli

- lavoro : - località

Puntone - Bientina (PI)

- data :

14104/00

Costruzione fienile

- quota inizio : - prof. falda:

Piano Campagna 1,20 m da quota inizio

- localita .	Pu	ntone	- Rie	nuna	(PI)								•	r. raid	a.	1,2	o m da	ı quoi	a miz	ZIO
- note :													- pag			7				
			[NAT	URA	COES	MAL					ATU	RA	RA	YUL	ARE			
Prof. R	p Rp/Rt		Y	d,vo	Cu	OCR	Eu50		Мо	Dr	ø1s	ø2s	ø3s	ø4s	ødm		Amax/g	E'50		
m kg/d	cm² (-)	Litol.		-	kg/cm²	(-)	kg/c	m²	kg/cm²	%	(°)	(°)	(°)	(°)	(°)	(°)	(-)	kg/c	m² kg	/cm²
0,20 0,40		333 333	1,85 1,85	0,04 0,07					_				-			-		_	-	_
0,60 1	0 12	2///	1,85	0.11	0,50	41,2	85 85	128	40		-			-				_	-	_
1.00 1	0 14	2/// 2///	1,85 1,85	0,15 0,19	0,50 0,54	28,8 23,8	85 91	128 137	40 42	_								-		_
1,20 1	0 12	2/// 2///	0,90 0,94	0,20 0,22	0,50 0,64	19.4	85 108	128 162	42 40 48 52		-								-	
1.60 1	6 15	2////	0.96	0.24	0.70	23,4 23,6	118	177	52	-	-								_	_
1.80 1	6 16	2/// 2///	0.96	0,26 0,28	0,70 0,60	21,5 16,5	118 103	177 154	52 47											
2,20	5 14	2///	0.93 0.95	0.30	0.67	17,2	113	170	50				-						-	
2,40 1 2,60 2,80 3,00 3,20 3,40 1 3,80 1 4,00 1	3 13 8 12	2/// 2///	0.93 0.86	0,32 0,33	0,60	14.1 7.9	103 80	154 121	47 35											_
2,80	6 10 7 10	1***	0,46 0,46	0,34 0,35	0,30 0,35	5,3 6,2	18 19	27 28	9 11									-		-
3,00	9 11	2////	0.88	0.37	0.45	8,0	89	133	38		_									
3,40 1 3,60 1	1 13	21111 21111	0,91 0,91	0,39 0,41	0,54 0,54	9,4 8,9	93 96	139 144	38 42 42										-	-
3,80 1	2 15	2///	0.92	0.42	0,57	9.1	101	151	45											-
- 4,00 1 - 4,20 1	3 11 4 12	2/// 2///	0,93 0,94	0,44	0,60 0,64	9.3 9.4	106 110	158 166	47 48											
4.40 1	8 12	2////	0,98	0.48	0.75	10,9	128	191	56	~~		~~					0.005			~~
4.80 1	9 13	4/:/: 2///	0,93	0,50 0,52	0,80 0,78	11,3 10,4	136 132	204 198	60 58	34	33	35	38	41	32	27	0,065	33	50	60
5.00 2	1 20 3 16	41:1: 2111	0,93	0,54 0,56	0,82 0,60	10,7 7,0	140 140	210 210	58 63 47	33	33	35	38	41	32	27	0,065	35	53	63
5 40	8 15	2////	0.86	0,57	0,40	4,0	160	240	35		_									_
5.80	8 17 6 15	2//// 1***	0,86 0.46	0,59 0,60	0,40 0,30	3,9 2,6	166 33	249 49	35 35 9					-						Ξ.
6,00	6 22	2///	0.82	0,62	0.30	2,5	158	237	29								0.040			<u></u>
6.40 1	0 37 0 50	4/:/: 4/:/:	0.86 0.86	0,63 0,65	0,50 0,50	4,7 4,5	176 182	265 272	40 40	3	28	32 32	35 35	38 38	27 27	26 26	0,010 0,008	17 17	25 25	30 30
6,60 1 6,80	4 35 8 40	4/:J:	0,89 0,84	0,67 0,69	0,64 0,40	5,9 3,2	178 191	267 286	48	14	29 28 30 28	33 31	36 35	39 38	28 25	26 26	0,028	23 13	25 25 35 20	30 — 30 42 24
7,00 7,20	5 15	1***	0,46 0,80	0.70	0,40 0,25 0,25	1.7	31	46	.8						25	20			20	
7,20 7.40	5 19 6 22	2/// 2///	0,80 0,82	0,71 0,73	0,25 0,30	1,7 2,1	144 167	216 250	35 8 25 29											_
7,60	4 20	2////	0.78	0.74	0,20	1.2	119	178	20											-
7,40 7,60 7,80 8,00 8,20 1	4 15 5 19	2//// 🦜	0,46 0,80	0,75 0,77	0,20 0,25	1,2 1,5	26 145	39 218	6 25											_
8,20 1 8,40	0 19 8 17	2/// (\ 2///	0,90 0,86	0,79 0,80	0,50	3,6 2,6	222 209	218 333 313	25 40 35											
8,60	6 18	2////	0.82	0,82	0,30	1,8	171	257	29											_
8,60 8,80 9,00	6 22	2///	0,82 0.46	0,84	0,30	1,7 1,4	172 32	258 48	29 29 8											_
	-	•	٠, ٠٠	5,55	-,	•••			•											

		1					_	_					_		_		-		_		_				:			=	_	:		-			.:	-	-	===	_		_
GEOTECNICI	σ-a Kg/cm²	CPT255	C	٠,٠	ρ. Τ.	. 14	. 44	.62	.71	.49	.42	.51	. 42	.90	• 90	.23	.70	.87	.80	.81	.98	.83	.67	.51	.77	.61	1.728	. 20	29	၁ (V -	10	1.0	100	.50	58	. 26	34	.18	.11	00.
	Cu Kg/cm²		í	1/1	0 1	. 57	.73	.81	.85	. 73	. 69	.73	.67	.39	39	.56	.80	.88	.84	.84	.92	.83	.75	99.	.79	.70	0.755	00	40.	. 9.	, 0,0	, 0	4	52	. 60	. 65	. 47	.51	.43	.38	.32
PAR	Ф																										19														
STRATIGRAFIA	Stratig. Simbol.			j (/=/=/=				/=/=/=	[/=/=/=]	/=/=/=)))))) (1) (2) (3)	/=/=/=	/=/=/=	/=/=/=											/=/=/=	- 1 1 1 1 1	li .		2 22 			16 14 19 19 11	## ## ## ## ## ##		 			 	/=/=/=
STRAT	Lito_ logia			4 4		At, p	V	Ą	¥	At,p	u	At,p		ī	· •	At, p		Ą	ď	∢	¥	Ą	Ą	Ą	¥	¥	At,p	⋖ :	∢,	∢	V	Ţ «	: ~	: ~		<	<<	₹	ď	K	At,p
ELABOR.	Rp/Ral		44. 64.	'nc	•		7	e,	**	.7	ထ္	7.1	0	ភ	4	. 7	9.	?	ប	۳.	4	ů,	4.	•	4.	7	7.92	٠,	ი ი) (,0	י אני		20	$\frac{1}{1}$	2.0	0.5	0.2	9.1	ω,	6
DATI E	Ral	É	100	۰, ۵	•	9.	φ.	0	7	4.	۳,	4.	ഹ	9.	۳,	9	0	4	7	ტ	۲.	4.	4.	4	9.	9.	2.07	4.	φ,	٥٠	, -	• 0	ι α		2	۳.	<u>ر</u>	۲.	3	.2	۲.
AGNA	R1 Kg/cm²	OMENDICA	MEINICE 27 00	٠,		ώ.	4.	0	4.	ů	ö	ů	4.	4.	ò	φ.	ö	4.	4.	'n	4	9	4	œ	4	ä	50.00	0	ω (,	0 C	•	. 4	ά	4	9	d	0	0	φ.	9
DI CAMPA	Rp Kg/cm²	ИРЛО	TINETY 1 E OO	0 <		4.0	0 . /	9.0	0.0	8.0	7.0	8.0	6.0	0.0	0.0	4.0	0.6	1.0	0.0	0.0	2.0	0.0	8.0	0.9	9.0	7.0	19.00	4.0	5.0		0 6		1.0	0.5	5.0	6.0	2.0	6	1.0	0	0
DATI D	Profond.	4700dd ++	A CA	104	1	08.	-00.	.20	04.	09.	08.	00*	. 20	.40	09.	08.	00:	02:	04.	09:	08.	00.	.20	04.	09.	08.	2.00>	.20	04.	100.		20-1	40	09	08	00	.20	04.	09.	08.	00-

and the second of the second o

.

DATI	DI CAMPA	AGNA	DATI	ELABOR.	STRAT	TIGRAFIA	PAR	AMETRI (GEOTECNICI
Profond.	Rp Kg/cm²	R1 Kg/cm²	Ral	Rp/Ral		Stratig. Simbol.	ф	Cu Kg/cm²	σ-a Kg/cm²
** PROVA	DENETE/	METER TO	A GUAU.	TCA • DD	2				CPT256
0.40>		48.00	1.80	12.60	λl	==≈==≈	33	0.996	1.918
0.60>		42.00	1.67	12.75	Al	=====	30	0.804	1.566
0.80>		34.00	1.33	9.13	A	======	27	0.602	1.194
1.00>		42.00	1.53	9.19	Ä		28	0.818	1.613
1.20>		52.00	2.07	9.55	Ä	=====	28	0.904	1.788
1.40>		48.00	2.20	12.50	λl	==≈==≈	25	0.703	1.418
1.60>		31.00	1.20	13.00	Al	==≈==≈	23	0.606	1.246
1.80>	12.00	27.00	1.00	11.25	A	=====	22	0.508	1.072
2.00>	16.00	32.00	1.07	13.33	Αl	=====	23	0.745	1.534
2.20>		35.00	1.20	14.17	Αl	=====	23	0.791	1.633
2.40>		30.00	1.20	15.00	Al	==≈==≈	20	0.551	1.189
2.60>		20.00	0.80	17.14	La	=====	17	0.377	0.871
2.80>		14.00	0.47	15.00	Al	==≈==≈	16	0.310	0.755
3.00>		21.00	0.47	21.00	La	≈≈=≈≈=	20	0.673	1.457
3.20>		23.00	0.67	21.67	La	≈≈=≈≈=	19	0.621	1.371
3.40>		17.00	0.60	17.14	La	××=××=	16	0.370	0.906
3.60>		13.00	0.47	18.00	La	~~=~~=	14	0.268	0.725
3.80>		13.00	0.33	17.14	La	≈≈=≈≈=	15	0.366	0.923
4.00>		14.00	0.47	21.00	La	≈≈=≈≈=	14	0.314	0.837
4.20>		11.00	0.33	18.00	La	≈≈=≈≈=	13	0.263	0.750
4.40>		11.00	0.33	18.00	La	≈≈=≈≈=	12	0.261	0.756
4.60>		12.00	0.33	15.00	Al	=====	13	0.294	0.832
4.80>		15.00	0.47	15.00	Al	=====	14	0.340	0.929
5.00>		16.00	0.53	17.14	La	~~=~~=	13	0.356	0.970
5.20>		13.00	0.47	18.00	La	~~=~~=	11	0.255	0.785
5.40> 5.60>		12.00	0.33	52.50	Sl Sl	:::::::::::::::::::::::::::::::::::::::	12 13	0.380 0.441	1.029 1.151
5.60> 5.80> 6.00> 6.20> 6.40>		10.00	0.13	60.00 23.57	Ls	::≈::≈	15	0.528	1.323
6.00>		10.00	0.13	22.50	La	~:~~:~ ~~=~~=	0	0.101	0.519
6.20>		5.00	0.13	15.00	Al	======	ő	0.096	0.512
6.40>	3.00	6.00	0.20	15.00	λĺ	======	ŏ	0.095	0.514
6.60>	5.00	8.00	0.20	15.00	Αl	==≈==≈	8	0.190	0.701
6.80>	6.00	11.00	0.33	12.86	λl	=====	10	0.236	0.795
7.00>	9.00	16.00	0.47	15.00	Αl	=====	13	0.378	1.072
7.20>	10.00	19.00	0.60	11.54	A		14	0.388	1.096
7.40>	10.00	23.00	0.87	10.00	A	=====	13	0.387	1.099
7.60>	14.00	29.00	1.00	14.00	Al	==≈==≈	15	0.614	1.537
7.80>	11.00	26.00	1.00	11.79	A	======	14	0.429	1.192
8.00>	12.00	26.00	0.93	12.00	A	=====	14	0.472	1.280
8.20>	12.00	27.00	1.00	10.59	A		14	0.471	1.285
8.40>	12.00	29.00	1.13	12.00	A		14	0.470	1.290
8.60>	8.00	23.00	1.00	10.00	A	======	11	0.295	0.964
8.80>	8.00	20.00	0.80	12.00	A	=====	11	0.295	0.969
9.00>	8.00	18.00	0.67	13.33	Al	=====	11	0.322	1.025
9.20>	7.00	16.00	0.60	13.13	Αl	=====	9	0.273	0.939
9.40>		15.00	0.53	11.67	A		9	0.249	0.900
9.60>		36.00	0.60	33.75	Sa	::=::=	19	1.512	3.306
6.80> 7.00> 7.20> 7.40> 7.60> 8.00> 8.40> 8.60> 8.60> 9.00> 9.20> 9.40> 9.80> 10.00>	8.00	20.00	0.80	12.00	A At n	======	11	0.291	0.991
#T0.00>	4.00	14.00	0.67	6.00	At,p	=/=/=/	0	0.111	0.654

DATI			DATI	ELABOR.	STRAT	TIGRAFIA	PARA	AMETRI (GEOTECNICI
Profond.	Rp Kg/cm²	Rl Kg/cm²	Ral	Rp/Ral		Stratig. Simbol.	Φ	Cu Kg/cm²	σ-a Kg/cm²
AA DDOWA	DENEMB	WEMPTO	CM1/m	CON ADDI					CPT257
** PROVA 0.40>	16.00	30.00	0.93	12.00	A	=====	31	0.692	1.340
0.60>	18.00	38.00	1.33	12.27	Αl	==≈==≈	30	0.852	1.657
0.80>	13.00	35.00	1.47	9.29	A	=====	27	0.559	1.113
1.00>	15.00	36.00	1.40	8.65	A	======	27	0.645	1.284
1.20>	18.00	44.00	1.73	8.18	λ	=====	27	0.773	1.539
1.40>	23.00	56.00	2.20	11.13	A	======	27	0.989	1.961
1.60>	21.00	52.00	2.07	11.67	A	=	26	0.901	1.806
1.80>	19.00	46.00	1.80	9.50	A	{ }	25	0.812	1.649
2.00>	20.00	50.00	2.00	11.11	A	=====	25	0.854	1.741
2.20>	17.00	44.00	1.80	15.94	λl	=====	23	0.791	1.633
2.40>	10.00	26.00	1.07	15.00	Al	==≈=≈	19	0.456	1.009
2.60> 2.80>	8.00 13.00	18.00 21.00	0.67 0.53	15.00 13.93	Al Al	======	17 20	0.359 0.595	0.836 1.297
3.00>	17.00	31.00	0.93	15.94	λl	=======================================	21	0.595	1.668
3.20>	17.00	33.00	1.07	15.00	λì	=====	21	0.782	1.676
3.40>	10.00	27.00	1.13	12.50	λl	=====	17	0.447	1.052
3.60>	12.00	24.00	0.80	11.25	λ	=====	18	0.494	1.154
3.80>	16.00	32.00	1.07	9.60	Ä		19	0.666	1.493
4.00>	20.00	45.00	1.67	11.11	À	======	20	0.838	1.832
4.20>	19.00	46.00	1.80	10.96	λ		20	0.793	1.757
4.40>	18.00	44.00	1.73	13.50	λl	=====	19	0.820	1.818
4.60>	16.00	36.00	1.33	12.00	A	======	18	0.660	1.527
4.80>	12.00	32.00	1.33	12.00	A	=====	16	0.485	1.205
5.00>	15.00	30.00	1.00	11.25	À	\ ===== \	17	0.614	1.460
5.20>	18.00	38.00	1.33	11.25	À	======	18	0.743	1.712
5.40>	24.00	48.00	1.60	12.00	A		20	1.003	2.212
5.60> 5.80>	26.00	56.00 52.00	2.00	12.19 9.68	λl	======	20 19	1.193 0.828	2.580 1.893
6.00>	23.00	54.00	2.07	10.45	A A		19	0.957	2.145
6.20>	23.00	56.00	2.20	15.68	λl	==≈==≈	19	1.048	2.321
6.40>	13.00	35.00	1.47	12.19	λĺ	======================================	16	0.571	1.418
6.60>	10.00	26.00	1.07	11.54	λ		14	0.390	1.081
6.80>	16.00	29.00	0.87	17.14	La	≈≈=≈≈=	17	0.748	1.768
7.00>	16.00	30.00	0.93	20.00	La	≈≈=≈≈=	17	0.747	1.773
7.20>	15.00	27.00	0.80	17.31	La	≈≈=≈≈=	16	0.696	1.681
7.40>	9.00	22.00	0.87	15.00	Al	==≈==≈	13	0.377	1.080
7.60>	10.00	19.00	0.60	18.75	La	××=××=	13	0.445	1.216
7.80>	8.00	16.00	0.53	17.14	La	×====	11	0.344	1.030
8.00~->	13.00	20.00	0.47	21.67	La	≈≈=≈≈=	15	0.593	1.510
8.20>	12.00	21.00	0.60	20.00	La	****	14	0.542	1.420
8.40 > 8.60>	9.00	20.00	0.60	18.33	La	~~=~= ~~=	13	0.491	1.330
8.80>	9.00	18.00 16.00	0.60	19.29 16.88	La Al	======	12 12	0.390 0.370	1.144
9.00>	8.00	16.00	0.53	24.00	Ls	≈:≈≈:≈	11	0.376	1.090
9.20>	8.00	13.00	0.33	30.00	Ls	≈:≈≈:≈	11	0.355	1.095
9.40>	6.00	10.00	0.27	22.50	La	≈≈=≈≈=	7	0.236	0.875
9.60>	5.00	9.00	0.27	15.00	λl	==≈==≈	3	0.176	0.768
9.80>	5.00	10.00	0.33	15.00	Al	======	3	0.175	0.771
10.00>	8.00	13.00	0.33	7.50	At,p	=/=/=/	11	0.278	0.972
10.20>	54.00	70.00	1.07	54.00	S1	::≈::≈	23	3.291	6.702
10.40>	15.00	30.00	1.00	8.65	λ	======	14	0.593	1.582
10.60>	42.00	68.00	1.73	52.50	Sl	::≈::≈	21	2.539	5.285
10.80>	30.00	42.00	0.80	14.06	Al	=====	19	1.362	3.055
11.00>	48.00	80.00	2.13	36.00	Sa	11=11=	22	2.740	5.679
11.20>			1.33	50.00	Sl	::8::8	26	6.160	12.183
11.40>		100.00	2.00	47.73	Sl	::≈::≈	24	4.284	8.625 9.714
11.60> 11.80>		106.00	1.47	35.00	Sa Ls	::=::= ::=::=	25 21	4.854 2.237	4.74B
	44.00 58.00	80.00	2.40 1.60	27.50 87.00	S+gh	~ ~~ ~	22	0.000	5.649
12.00> 12.20>	32.00	42.00	0.67	40.00	Sa Sa	:=:=	19	1.792	3.915
12.40>	50.00	62.00	0.80	93.75	Gh+s	:00:	21	0.000	4.845
12.40>	40.00	48.00	0.53	42.86	Sa	::=::=	20	2.261	4.819
12.80>	48.00	62.00	0.93	51.43	S1	:::::::::::::::::::::::::::::::::::::::	21	2.901	6.042
13.00>	36.00	50.00	0.93	38.57	Sa	:=:=	19	2.023	4.380
						1 1	- -		

Comune di Bientina -	Variante anticipatrio	e al P.O. e contestual	le Piano Attuativo de	el comparto denominato	TR cop4-A in loc.	Pratogrande
						-
	ALL.15	RISULTATI D	ELLE INDAG	INI SISMICHE		

RISULTATI DI UN'INDAGINE SISMICA DOWN HOLE EFFETTUATA NEL COMUNE DI BIENTINA (PI) VIA GOFI DI PECORA

Committente: Yachtline s.p.a.

Agosto 2013

Introduzione

Nel metodo sismico down hole (DH) viene misurato il tempo necessario per le onde P e S di spostarsi tra una sorgente sismica, posta in superficie, e i ricevitori, posti all'interno di un foro di sondaggio (figura 1, 2). Le componenti indispensabili per una misura DH accurata consistono:

- una sorgente meccanica in grado di generare onde elastiche ricche di energia e direzionali;
- uno o più geofoni tridimensionali, con appropriata risposta in frequenza (4,5-14 Hz), direzionali e dotati di un sistema di ancoraggio alle pareti del tubo-foro;
- un sismografo multi-canale, în grado di registrare le forme d'onda în modo digitale e di registrarle su memoria di massa;
- un trasduttore (trigger) alloggiato nella sorgente necessario per l'identificazione dell'istante di partenza della sollecitazione dinamica mediante massa battente.

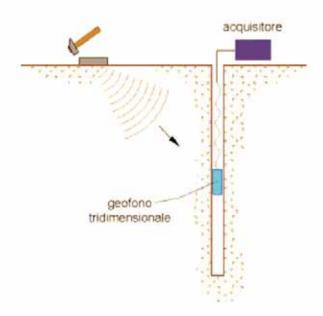


Figura 1 - Schema down hole ad un solo ricevitore

Durante la perforazione, per ridurre l'effetto di disturbo nel terreno, i fori vengono sostenuti mediante fanghi bentonici e il loro diametro viene mantenuto piuttosto piccolo (mediamente 15 cm).

I fori vengono poi rivestiti mediante tubazioni, generalmente in PVC, e riempiti con una malta a ritiro controllato, generalmente composta di acqua, cemento e bentonite rispettivamente in proporzione di 100, 30 e 5 parti in peso.

Prime di ogni cosa, è però importante assicurarsi che il foro sia libero da strozzature e che il tubo di rivestimento non presenti lesioni.

Procedura sperimentale

La sorgente per le onde compressionali consiste in una piastra di alluminio che, dopo avere opportunamente predisposto il piano di appoggio, viene adagiata in superficie ad una distanza di 1,5 – 5 m. Per l'energizzazione delle onde S si pone invece una traversina alla stessa distanza della piastra dal foro e orientata in direzione ortogonale ad un raggio uscente dall'asse foro posizionata sotto ad un autoveicolo, che fungerà da grave per il corretto accoppiamento al terreno. Alla sorgente è agganciato il trasduttore di velocità utilizzato come trigger.

Disponendo di tre ricevitori posti in posizione ortonormale, questi vengono collegati in modo da impedirne la rotazione relativa e da fissarne la distanza. Il primo dei due ricevitori viene raccordato ad una batteria di aste che ne permette l'orientamento dalla superficie e lo spostamento.

Una volta raggiunta la profondità di prova, i geofoni vengono orientati in modo che un trasduttore di ogni sensore sia diretto parallelamente all'asse della sorgente (orientamento assoluto).

A questo punto i ricevitori vengono assicurati alle pareti del tubo di rivestimento, la sorgente viene colpita in senso verticale (per generare onde di compressione P) o lateralmente (per generare onde di taglio SH) e, contemporaneamente, parte la registrazione del segnale di trigger e dei ricevitori.

Eseguite le registrazioni la profondità dei ricevitori viene modificata e la procedura sperimentale ripetuta.

Interpretazione in down hole con il metodo diretto

Per poter interpretare il down hole con il metodo diretto, inizialmente, bisogna correggere i tempi di tragitto (t) misurati lungo i percorsi sorgente-ricevitore per tenere conto dell'inclinazione del percorso delle onde. Se d è la distanza della sorgente dall'asse del foro (figura 3), r la distanza fra la sorgente e la tripletta di sensori, z la profondità di misura è possibile ottenere i tempi corretti (t_{COTT}) mediante la seguente formula di conversione:

$$1.0)t_{corr} = \frac{z}{r}t$$

Calcolati i tempi corretti sia per le onde P che per le onde S si realizza il grafico t_{corr} – z in modo che la velocità media delle onde sismiche in strati omogenei di terreno è rappresentata dall'inclinazione dei segmenti di retta lungo i quali si allineano i dati sperimentali (figura 4).

Ottenuti graficamente i sismostrati si ottengono la densità media, funzione della velocità e della profondità, e i seguenti parametri:

1) coefficiente di Poisson medio:

$$(2.0)v_{\text{medio}} = 0.5 \frac{\left(\frac{V_p}{V_i}\right)^2 - 2}{\left(\frac{V_p}{V_i}\right)^2 - 1}$$

2) modulo di deformazione a taglio medio:

$$3.0)G_{\text{medio}} = \rho V_s^2$$

3) modulo di compressibilità edometrica medio:

$$4.0)E_{dmedio} = \rho V_p^2$$

4) modulo di Young medio:

$$5.0)E_{\text{medio}} = 2\rho V_s^2 (1+\nu)$$

5) modulo di compressibilità volumetrica medio:

$$6.0)E_{\text{vmedio}} = \rho \left(V_{\text{p}}^2 - \frac{4}{3} V_{\text{s}}^2 \right)$$

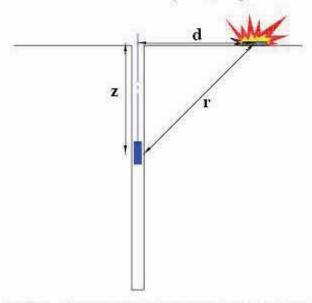


Figura 2 - Schema di down hole con metodo diretto

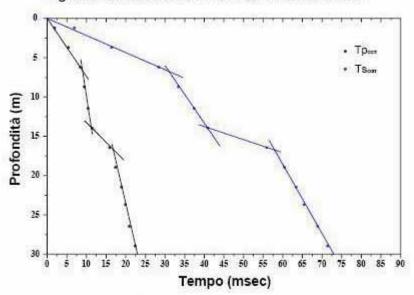


Figura 3 - Dromocrone

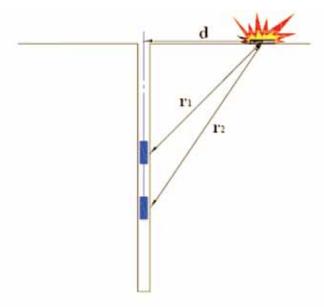


Figura 4 - Schema di down hole con metodo intervallo

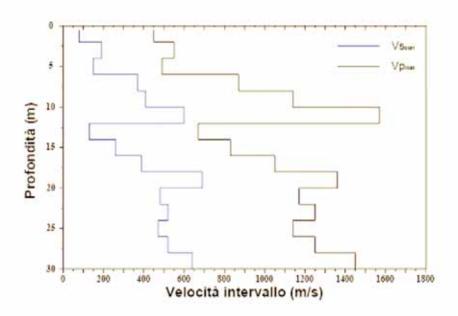


Figura 5 – Profilo delle velocità sismiche con metodo intervallo

le procedure d'interpretazione sopra descritte sono comunque suscettibili di una intale, cioè si basano sull'ipotesi che i percorsi delle onde siano rettilinei e coincidenti con que la sorgente ai ricevitori. Di solito ciò non è esatto, dato che, prima di giungere ai ricevitori, le fenomeni di rifrazione che ne modificano il percorso.

INTERPRETAZIONE DELLE MISURE

Dati iniziali

Offset scoppio	Numero di ricezioni	Posizione primo geofono	Interdistanza
(m)		(m)	(m)
2	31	1	1

Dati misure down hole

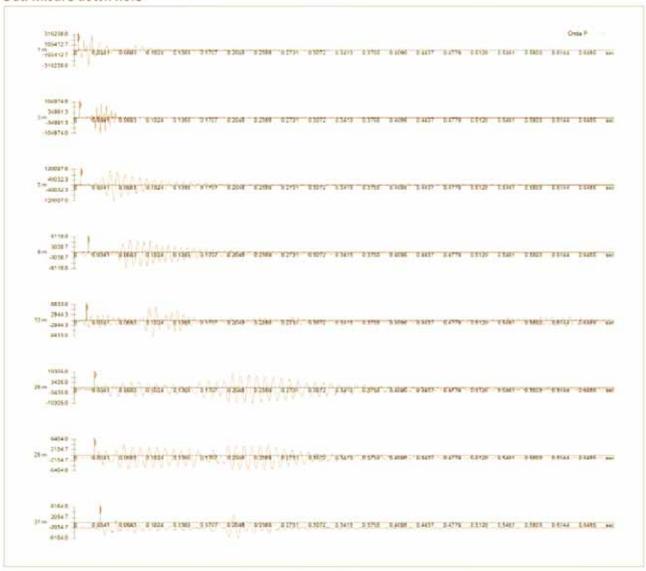


Figura 6

Alcuni sismogrammi relativi ad acquisizioni di onde P a differenti velocità con indicazione del relativo picking

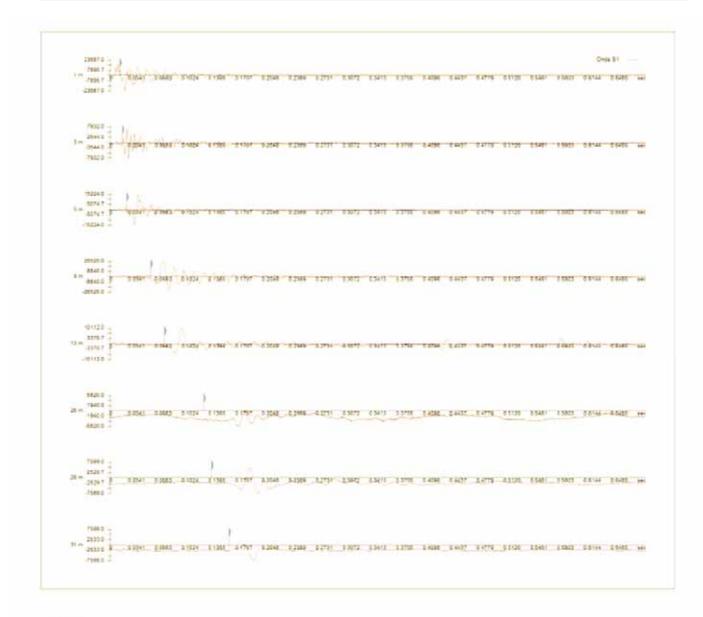


Figura 7
Alcuni sismogrammi relativi ad acquisizioni di onde SH a differenti velocità con indicazione del relativo picking

Registrazione Nr.	Z (m)	(msec)	Ts (msec)
1	1.00	3.28	7.98
2	2.00	4.09	10.12
3	3.00	5.22	13.16
4	4.00	6.57	16.82
5	5.00	7.97	21.05
6	6.00	9.30	25.26
7	7.00	10.70	29.19
8	8.00	12.09	33.32
9	9.00	13.41	38.24
10	10.00	14.78	42.92
11	11.00	16.25	47.42
12	12.00	17.83	52.12
13	13.00	19.13	57.08
14	14.00	20.50	62,31
15	15.00	21.97	67.42
16	16.00	23.54	72.23

17	17.00	24.94	76.83
18	18.00	26.28	81.82
19	19.00	27.52	87.41
20	20.00	28.80	92.75
21	21.00	30.04	97.65
22	22,00	31.37	102.40
23	23.00	32.60	107.05
24	24.00	33.86	111.78
25	25.00	35.19	116.27
26	26.00	36.45	120.82
27	27.00	37.65	125.66
28	28.00	38.84	130.52
29	29.00	40.04	134.84
30	30.00	41.28	139.50
31	31.00	42.49	144.35

Risultati

SR	Tpcorr	Tscorr
(m)	(msec)	(msec)
2.2361	1.4669	3.5688
2.8284	2.8921	7.1559
3.6056	4.3433	10.9498
4.4721	5.8764	15.0443
5,3852	7.40	19.5444
6.3246	8.8228	23.9637
7.2801	10.2883	28.0669
8.2462	11.729	32.3252
9.2195	13.0907	37.3294
10.198	14.493	42.0865
11.1803	15.9879	46.6551
12.1655	17.5874	51.4109
13.153	18.9076	56.4163
14.1421	20.294	61.6838
15.1328	21.7773	66.8286
16.1245	23.3582	71.6722
17.1172	24.7692	76.3038
18.1108	26.1193	81.3196
19.105	27.3688	86.9297
20.0998	28.6571	92,2897
21.095	29.9047	97.2101
22.0907	31.2412	101.9795
23.0868	32.4774	106.6476
24.0832	33.743	111.3939
25.0799	35.0779	115.8997
26.0768	36.3426	120.4641
27.074	37,5471	125.3167
28.0713	38.7413	130.1883
29.0689	39.9451	134.5205
30.0666	41.1886	139.191
31.0645	42.4019	144.0505

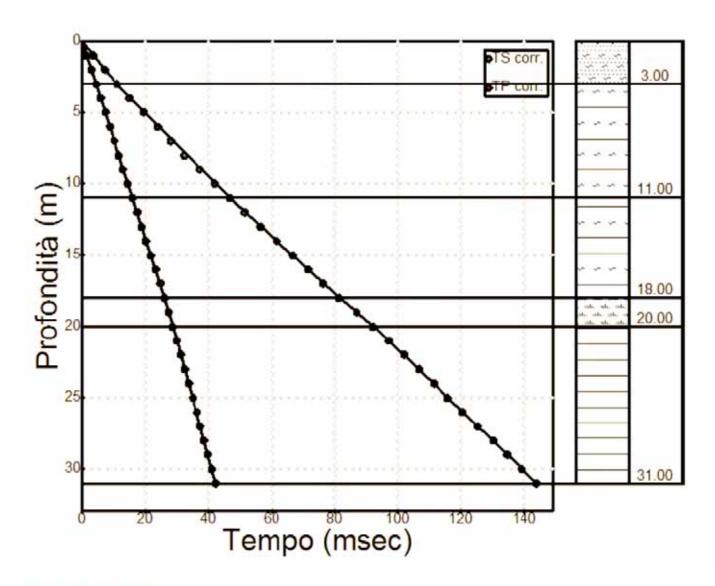
Tabella delle velocità e delle caratteristiche relative ad ogni metro di profondità.

Vp (m/s)	Vs (m/s)	g (kN/mc)	ni	G (MPa)	Ed (MPa)	E (MPa)	Ev (MPa)
681.71	280.21	22.37	0.3983	179.11	1060.10	500.90	821.29
701.66	278.78	20.93	0.4063	165.87	1050.76	466.53	829.59
689.09	263.58	20.17	0.4143	142.89	976.65	404.18	786.12
652.27	244.23	19.54	0.4185	118.85	847.73	337.18	689.26
656.34	222.22	18.92	0.4353	95.27	831.11	273.48	704.08
702.84	226.28	18.80	0.4422	98.16	947.00	283.13	816.12
682.36	243.71	18.94	0.4269	114.71	899.26	327.36	746.31
694.11	234.84	18.67	0.4354	104.99	917.23	301.41	777.24
734.38	199.83	17.92	0.46	72.97	985.51	213.07	888.21
713.11	210.21	18.03	0.4524	81.24	934.95	235.99	826.63
668.94	218.89	18.11	0.44	88.48	826.37	254.82	708.39
625.20	210.27	17,87	0.4362	80.57	712.27	231.43	604.84
757.46	199.78	17.60	0.4626	71.63	1029.70	209.53	934.19
721.29	189.84	17.34	0.4628	63.72	919.92	186.42	834.95
674.17	194.37	17.38	0.4547	66.96	805.50	194.81	716.23
632.55	206.46	17.57	0.4404	76.37	716.87	220.01	615.04
708.72	215.91	17.70	0.4488	84.14	906.57	243.80	794.39
740.69	199.37	17.34	0.4609	70.28	970.07	205.34	876.36
800.32	178.25	16.85	0.4739	54.59	1100.54	160.92	1027.75
776.22	186.57	16.99	0.4693	60.31	1043.86	177.23	963.45
801.54	203.24	17.30	0.4656	72.87	1133.38	213.60	1036.23
748.22	209.67	17.39	0.4574	77.96	992.74	227.24	888.80
808.93	214.22	17.44	0.4623	81.61	1163.72	238.68	1054.90
790.14	210.69	17.34	0.4617	78.49	1103.92	229.46	999.26
749.12	221.94	17.52	0.4519	88,00	1002.57	255.53	885.24
790.70	219.09	17.44	0.4584	85.36	1111.86	248.98	998.04
830.22	206.08	17.17	0.4672	74.36	1206.80	218.20	1107.66
837.38	205.27	17.13	0.468	73.60	1224.85	216.09	1126.71
830.70	230.83	17.57	0.4582	95.46	1236.34	278.40	1109.00
804.18	214.11	17.25	0.4619	80.64	1137.56	235.78	1030.04
824.20	205.78	17.07	0.4668	73.71	1182.44	216.24	1084.16

Metodo diretto

Profondità di riferimento: 31 m VS30: 213.68 m/s

Suolo di tipo C: Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di Vs,30 compresi tra 180 m/s e 360 m/s (ovvero 15 < NSPT,30 < 50 nei terreni a grana grossa e 70 < cu,30 < 250 kPa nei terreni a grana fina).


Sismostrati con metodo diretto

Descrizione (-)	Profondità (m)
	3
	11
	18
	20
	31

Valori medi

Vp medio (m/s)	Vs medio (m/s)	g medio (kN/mc)	ni medio	G medio (MPa)	Ed medio (MPa)	E medio (MPa)	Ev medio (MPa)
691.24	273.97	20.12	0.41	154	980.34	433.31	775.01
686.7	224.03	18.43	0.44	94.31	886.08	271.69	760.34
691.02	201.96	18.13	0.45	75.42	882.89	219.21	782.34
787.4	182.32	19.03	0.47	64.49	1202.99	189.83	1117
800.58	212.52	17.95	0.46	82.67	1173.23	241.75	1062.99

Dromocrone

Metodo intervallo

Profondità di riferimento: 31 m VS30: 197.88 m/s

Suolo di tipo C: Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di Vs,30 compresi tra 180 m/s e 360 m/s (ovvero 15 < NSPT,30 < 50 nei terreni a grana grossa e 70 < cu,30 < 250 kPa nei terreni a grana fina).

Valori medi

Vp medio (m/s)	Vs medio (m/s)	g medio (kN/mc)	ni medio	G medio (MPa)	Ed medio (MPa)	E medio (MPa)	Ev medio (MPa)
690.82	274.19	21.16	0.41	162.62	1029.17	457.2	812.33
688.04	225.03	18.62	0.44	96.83	898.65	278.3	769.53
694.3	202.29	17.54	0.45	73.38	865.84	213.05	768
788.27	182.41	16.92	0.47	57.45	1072.2	169.07	995.6
801.39	212.81	17.33	0.46	80.19	1136.02	234.38	1029.1

Indagine sismica downhole eseguita con sismografo MAE mod. Sysmatrack dotato di 24 canali con digitalizzatore 24 bit per singolo canale Array utilizzato:terna geofonica ortonormale da foro con sistema di fissaggio

pneumatico.

Frequenza propria Geofoni: 4.5 Hz

Energizzazione: tramite mazza da 12 kg su piastra di allumino, e traversina di

legno con grave (secondo le specifichespecifiche VEL) Numero di campioni acquisiti per secondo: 15000

Lunghezza registrazione: 7500 campioni

Vada, li Agosto 2013

Lo stendimento impiegato per il profilo MASW in oggetto ha le seguenti caratteristiche (vedi documentazione fotografica):

- n. geofoni: 24
- spaziatura fra i geofoni:1,5
- n. shots: sono state effettuate 2 rilevazioni, impiegando esclusivamente la mazza di battuta, a distanze di 5 e 7 metri dalla linea geofonica.
- tempo di acquisizione : 1.000 msec.

Il profilo è assimilabile ad orizzontale, in quanto i dislivelli massimi lungo lo stendimento sono non significativi.

INTERPRETAZIONE DEI DATI

Per il processo di interpretazione è stata utilizzata la curva di dispersione relativa allo "shot" posto a offset di 7 m dalla linea geofonica.

Per l'interpretazione dei dati è stato impiegato il software winMASW, il quale consente la determinazione di profili verticali della velocità delle onde di taglio Vs tramite l'inversione delle curve di dispersione ottenute, effettuata con algoritmi "genetici". Tale programma è in grado di operare sui records in formato SGY prodotti dalla strumentazione Ambrogeo secondo la procedura specifica descritta nel capitolo introduttivo.

Come già accennato, per la verifica attraverso la modellazione diretta, ci si è basati anche sul contesto geolitologico locale e sulle indagini geognostiche effettuate.

I diagrammi ed il report relativi al procedimento di elaborazione sono allegati alla presente relazione. Secondo la "modellazione diretta" si individuano 7 strati a differente velocità Vsh:

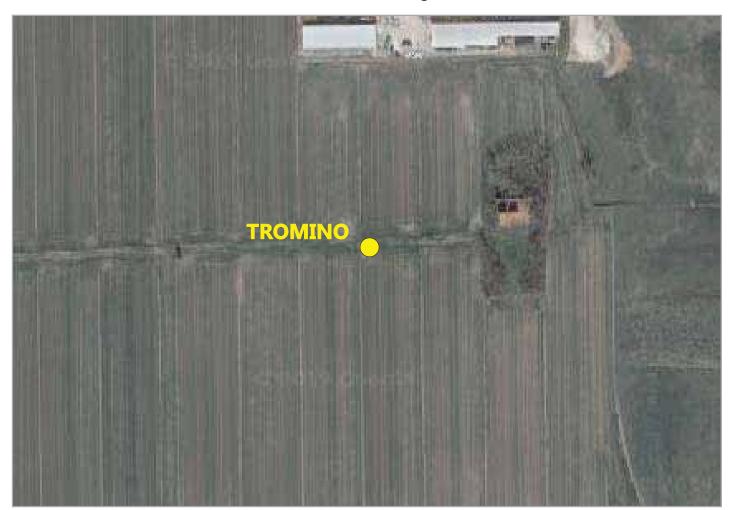
- secondo il MODELLO MEDIO:

strato	1	2	3	4	.5	6	7
VSh (m/sec)	182	171	176	171	183	205	230
spessore (m)	4,5	6,2	5,7	5,5	5,2	6,3	

Il parametro Vs₃₀ viene calcolato utilizzando una media ponderata dei valori di velocità delle onde di taglio dei primi 30 m di profondità mediante la seguente espressione:

$$\frac{30}{\sum_{i=1,N} \frac{h_i}{v_i}}$$

Con i dati ottenuti, per la zona di indagine si ha una "Vs30" intorno a 178 m/s; a questo, in considerazione di un appoggio delle fondazioni attorno a 1.00 m dal piano del piazzale, corrisponde a una possibile categoria di suolo di fondazione "**D**".


Masw 1

INDAGINE HVSR/MASW - BIENTINA - PIANO OPERATIVO LOCALITÀ NORDEST BIENTINA - POSTAZIONE HVSRA

documentazione fotografica

ubicazione scala 1:2.000

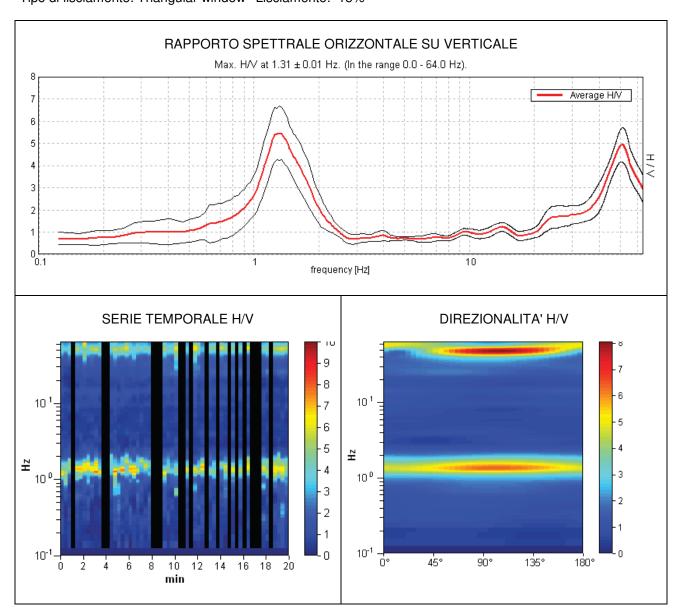
orientazione > N

contesto globale : pianura alluvionale contesto locale: zona a coltivazioni condizioni atmosferiche: sereno

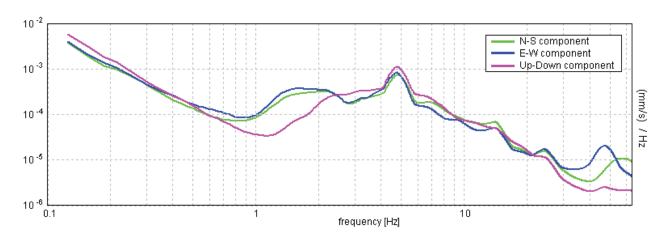
coordinate stazione - 43°43′33,6″ N - 10°38′03,6″ E

REPORT BIENTINA 2019 TROMO A

Strumento: TRZ-0158/01-11


Inizio registrazione: 01/04/19 11:34:32 Fine registrazione: 01/04/19 11:54:32

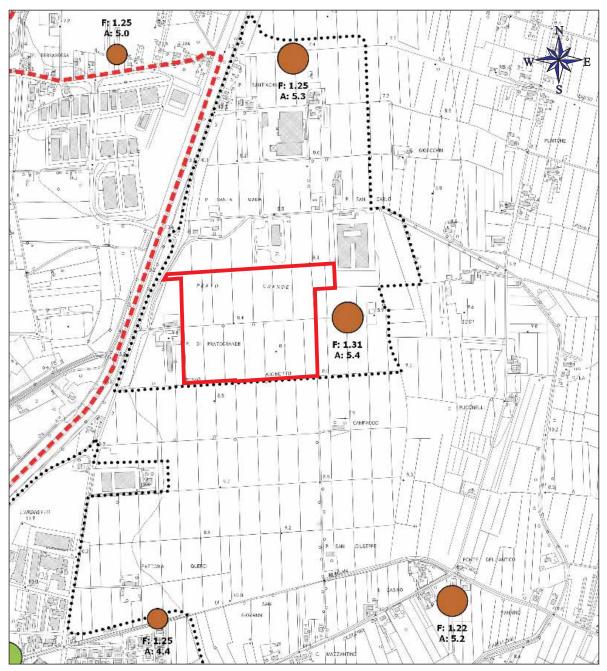
Nomi canali: NORTH SOUTH; EAST WEST; UP DOWN


Durata registrazione: 0h20'00". Analizzato 70% tracciato (selezione manuale)

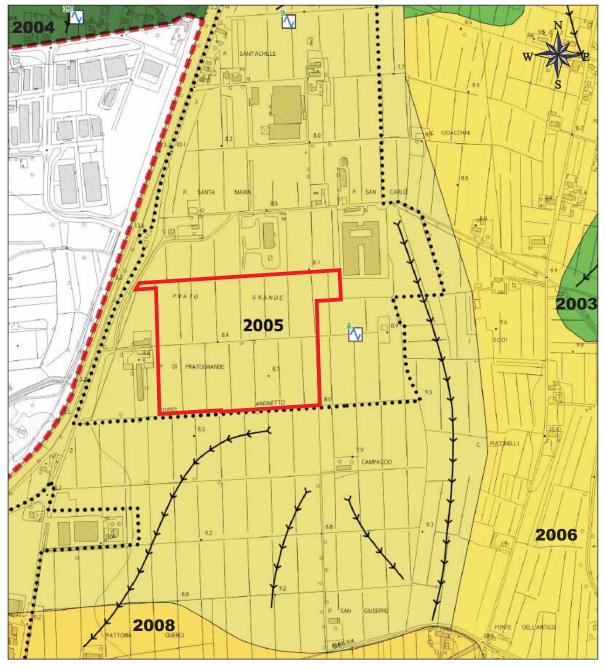
Freq. campionamento: 128 Hz Lunghezza finestre: 20 s

Tipo di lisciamento: Triangular window Lisciamento: 15%

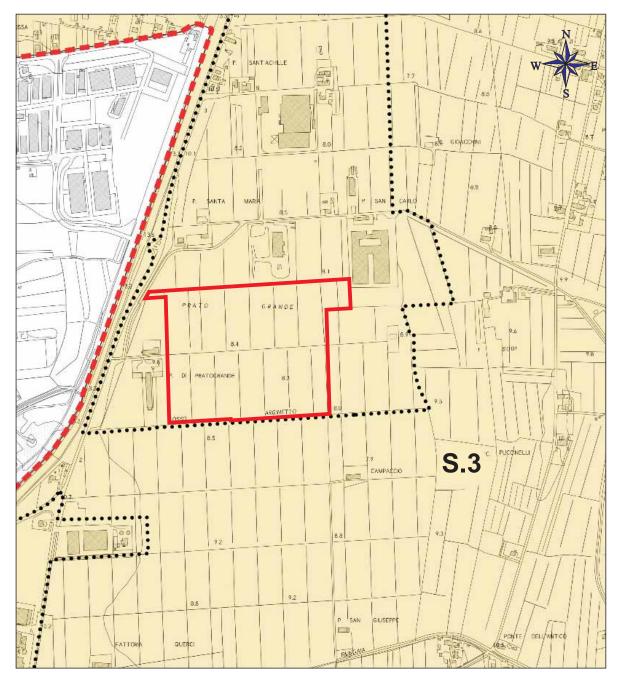
SPETTRI DELLE SINGOLE COMPONENTI

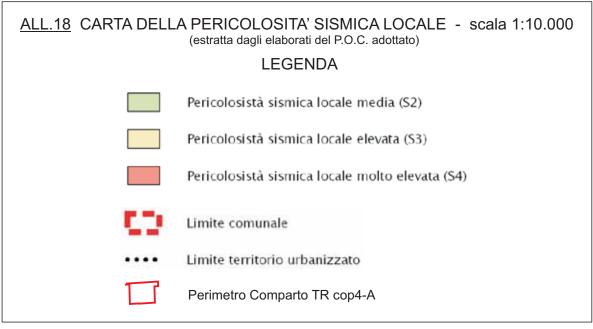

[Secondo le linee guida SESAME, 2005. Si raccomanda di leggere attentamente il manuale di Grilla prima di interpretare la tabella seguente].

Picco H/V a 1.31 ± 0.01 Hz (nell'intervallo 0.0 - 64.0 Hz).

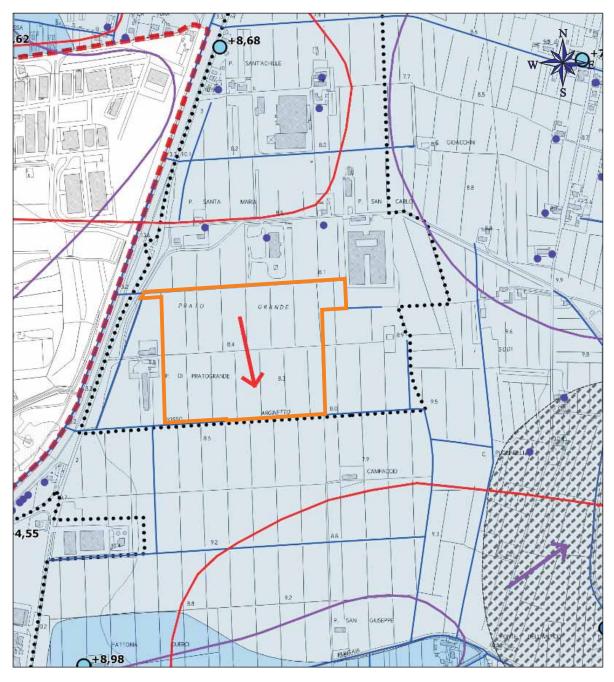

Criteri per una curva H/V affidabile [Tutti 3 dovrebbero risultare soddisfatti]						
$f_0 > 10 / L_w$						
$n_c(f_0) > 200$	1102.5 > 200	OK				
$\sigma_A(f) < 2 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 > 0.5Hz$	Superato 0 volte su 64	OK				
$\sigma_A(f) < 3 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 < 0.5Hz$						
Criteri per un picco H/V chiaro [Almeno 5 su 6 dovrebbero essere soddisfatti]						
Aimend 3 Su	6 dovrebbero essere soddisfatti]					
Esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$	6 dovrebbero essere soddisfatti]	ОК				
-		OK OK				
Esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$	1.0 Hz					
Esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Esiste f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$	1.0 Hz 1.875 Hz	OK				
Esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Esiste f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$ $A_0 > 2$	1.0 Hz 1.875 Hz 5.46 > 2	OK OK				

L _w	lunghezza della finestra
n _w	numero di finestre usate nell'analisi
$n_c = L_w n_w f_0$	numero di cicli significativi
f	frequenza attuale
f_0	frequenza del picco H/V
σ_{f}	deviazione standard della frequenza del picco H/V
$\varepsilon(f_0)$	valore di soglia per la condizione di stabilità $\sigma_f < \epsilon(f_0)$
\dot{A}_0	ampiezza della curva H/V alla frequenza f ₀
$A_{H/V}(f)$	ampiezza della curva H/V alla frequenza f
f = `	frequenza tra $f_0/4$ e f_0 alla quale $A_{H/V}(f^-) < A_0/2$
f ⁺	frequenza tra f_0 e $4f_0$ alla quale $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	deviazione standard di $A_{H/V}(f)$, $\sigma_A(f)$ è il fattore per il quale la curva $A_{H/V}(f)$ media deve
,	essere moltiplicata o divisa
$\sigma_{logH/V}(f)$	deviazione standard della funzione log A _{H/V} (f)
$\theta(f_0)$	valore di soglia per la condizione di stabilità $\sigma_A(f) < \theta(f_0)$


Valori di soglia per σ_f e $\sigma_A(f_0)$							
Intervallo di freq. [Hz]	< 0.2	0.2 - 0.5	0.5 - 1.0	1.0 - 2.0	> 2.0		
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀		
$\theta(f_0)$ per $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58		
$\log \theta(f_0) \text{ per } \sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20		

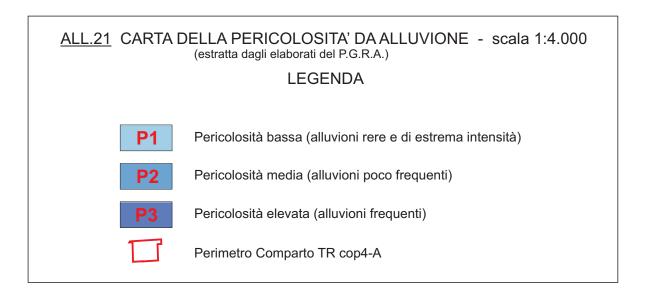


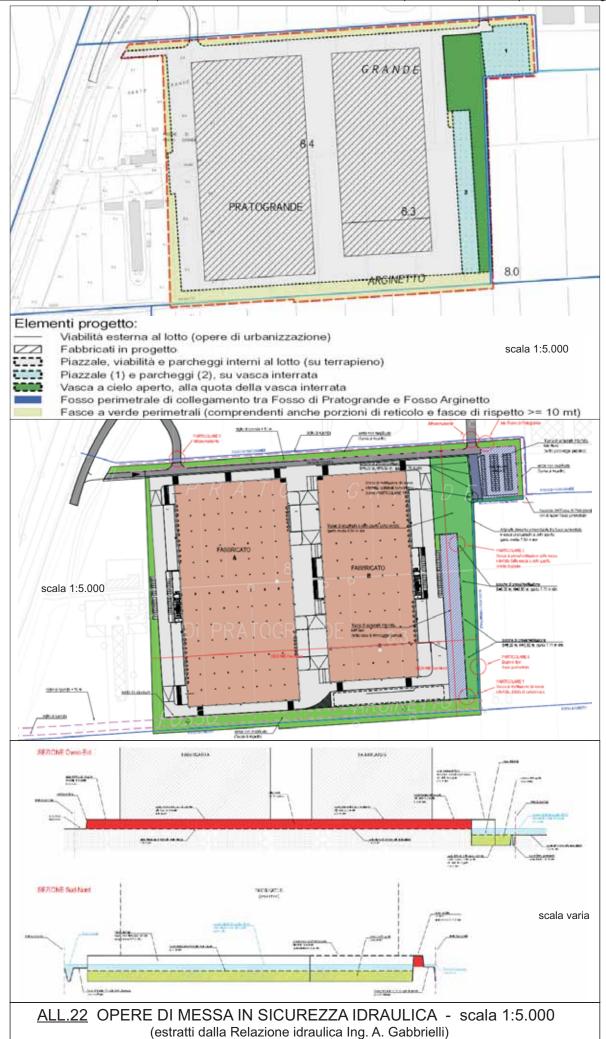
L.R. 79/2102, art. 22 lettera e - Aggiornamento del 20 luglio 2020



NO (ALTRO RETICOLO)

TOMBATO


CASO PARTICOLARE


Perimetro Comparto TR cop4-A

